A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems. Here, we develop a conceptual framework that places the temporal availability of water as the core driver of biodiversity and functional patterns of transitional ecosystems at the global scale. Biological covers (e.g., aquatic biofilms and biocrusts) serve as an excellent model system thriving in both aquatic and terrestrial states, where their succession underscores the intricate interplay between these two states. The duration, frequency, and rate of change of wet-dry cycles impose distinct plausible scenarios where different types of biological covers can occur depending on their desiccation/hydration resistance traits. This implies that the distinct eco-evolutionary potential of biological covers, represented by their trait profiles, would support different functions while maintaining similar multifunctionality levels. By embracing multiple alternating transitional states as interconnected entities, our approach can help to better understand and manage global change impacts on biodiversity and multifunctionality in water-driven transitional ecosystems, while providing new avenues for interdisciplinary studies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.14488DOI Listing

Publication Analysis

Top Keywords

transitional ecosystems
16
transitional states
12
water-driven transitional
12
biological covers
12
alternating transitional
8
transitional
7
ecosystems
6
states
5
unfolding dynamics
4
dynamics ecosystems
4

Similar Publications

The physical and chemical properties of wild berry fruits change dramatically during development, and the ripe berries host species-specific endophytic communities. However, the development of fungal endophytic communities during berry ripening is unknown. We studied bilberries (Vaccinium myrtillus L.

View Article and Find Full Text PDF

Assembly Graph as the Rosetta Stone of Ecological Assembly.

Environ Microbiol

January 2025

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA.

Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories.

View Article and Find Full Text PDF

Warming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.

View Article and Find Full Text PDF

High Nature Value (HNV) farming systems occur in areas where the major land use is agriculture and are characterized by their significance in promoting biodiversity and ecosystem services due to their extensive land use. Despite their importance for ecological and socio-economic resilience of rural regions, these systems are often overlooked in Life Cycle Assessment (LCA) studies due to challenges in data compilation, especially from small local farms and because of the diversity of production. To address this gap, we established an international collaborative network across Europe, involving professionals directly engaged with farmers, farmer associations, and researchers to collect data on HNV farms employing a developed questionnaire examining inputs and outputs, farm structures, and herd characteristics.

View Article and Find Full Text PDF

Protocol for differentiating hematopoietic progenitor cells from human pluripotent stem cells in chemically defined monolayer culture.

STAR Protoc

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China. Electronic address:

Human pluripotent stem cells (hPSCs) provide a powerful platform for generating hematopoietic progenitor cells (HPCs) and investigating hematopoietic development. Here, we present a protocol for maintaining hPSCs and inducing their differentiation into HPCs through the endothelial-to-hematopoietic transition (EHT) on vitronectin-coated plates. We outline steps for evaluating the efficiency of HPC generation and assessing their potential to differentiate into various hematopoietic lineages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!