The exploration of near-infrared photoluminescence (PL) from atomically precise nanoclusters is currently a prominent area of interest owing to its importance in both fundamental research and diverse applications. In this work, we investigate the near-infrared (NIR) photoluminescence mechanisms of two structural isomers of atomically precise gold nanoclusters of 28 atoms protected by cyclohexanethiolate (CHT) ligands, i.e., Au(CHT) and Au(CHT). Based on their structures, analysis of O (triplet oxygen) quenching of the nanocluster triplet states, temperature-dependent photophysical studies, and theoretical calculations, we have elucidated the intricate processes governing the photoluminescence of these isomeric nanoclusters. For Au(CHT), its emission characteristics are identified as phosphorescence plus thermally activated delayed fluorescence (TADF) with a PL quantum yield (PLQY) of 0.3% in dichloromethane under ambient conditions. In contrast, the Au(CHT) isomer exhibits exclusive phosphorescence with a PLQY of 3.7% in dichloromethane under ambient conditions. Theoretical simulations reveal a larger singlet (S)-triplet (T) gap in Au than that in Au, and the higher T state plays a critical role in both isomers' photophysical processes. The insights derived from this investigation not only contribute to a more profound comprehension of the fundamental principles underlying the photoluminescence of atomically precise gold nanoclusters but also provide avenues for tailoring their optical properties for diverse applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328167 | PMC |
http://dx.doi.org/10.1021/acsnano.4c06702 | DOI Listing |
Sensors (Basel)
January 2025
Graduate Institute of Precision Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung 40227, Taiwan.
This study investigates the surface energies and work function changes in ZnGaO(111) surfaces with different atomic terminations using ab initio density functional theory. It explores the interactions of gas molecules such as NO, NO, and CHCOCH with Ga-terminated, O-terminated, and Ga-Zn-O-terminated surfaces. This study reveals previously unreported insights into how O-terminated surfaces exhibit enhanced reactivity with NO, resulting in significant work function changes of +6.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Institute for Systems Biology and Medicine (RISBM), Nauchnyi proezd 18, 117246 Moscow, Russia.
SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
Atomic magnetometers are highly sensitive instruments widely used for measurements of weak magnetic field. Extracting vector information while maintaining high-precision scalar detection has become the trend in atomic magnetometer development. We introduce a vector atomic magnetometer containing a 5 mm-thick microfabricated vapor cell operating in free-induction-decay mode.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, PR China.
C-C bond cleavage and recombination provide an efficient strategy for the modification and reconstruction of molecule structures. Herein, we present a method for achieving amidation of aryl C(sp)-H bond through the cleavage and recombination of C-C triple bond with the involvement of nitrous acid esters. This method marks the instance of precise and controlled stepwise cleavage of C-C triple bond, offering a fresh perspective for the cleavage of such bonds.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China.
Precisely managing electron transfer pathways throughout the catalytic reaction is paramount for bolstering both the efficacy and endurance of catalysts, offering a pivotal solution to addressing concerns surrounding host structure destabilization and cycling life degradation. This paper describes the integration of B-Ni dual single-atoms within MnO channels to serve as an electronic reservoir to direct the electron transfer route during methane catalytic combustion. Comprehensive analysis discovers that B atoms weaken the interaction between O and Mn atoms by forming bonds with lattice oxygen atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!