Monitoring arthropods under the scope of the LIFE-BEETLES project: I - Baseline data with implementation of the Index of Biotic Integrity.

Biodivers Data J

University of the Azores, cE3c- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, Rua Capitão João d´Ávila, Pico da Urze, 9700-042, Angra do Heroísmo, Azores, Portugal University of the Azores, cE3c- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, CHANGE - Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, Rua Capitão João d´Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Azores Portugal.

Published: July 2024

Background: The urgent need for conservation efforts in response to the global biodiversity crisis is exemplified by initiatives, such as the EU LIFE BEETLES project. This project aims to preserve endangered arthropod species that are crucial for ecosystem functionality, with a focus on endemic beetle species in Flores, Pico and Terceira Islands (Azores, Portugal): Borges & Serrano, 2017, (Tarnier, 1860) and Borges, Serrano & Amorim, 2004. These species are single island endemics respectively from Flores, Pico and Terceira. They are threatened by environmental degradation, facing the dual challenge of restricted distribution and habitat degradation due to the spread of invasive plants.The project aims to enhance habitat quality and biodiversity conservation through habitat restoration and plant invasive species control measures. These measures are funded by the European Commission and coordinated by the Azorean Environment Directorate-General. The current Data Paper evaluates the effectiveness of the LIFE BEETLES project in improving habitat quality and offers insights into the balance between habitat restoration efforts and endangered species conservation in island ecosystems, utilising as ecological indicator the Index of Biotic Integrity (IBI) framework.

New Information: This study establishes a comprehensive database derived from a long-term arthropod monitoring survey that used SLAM (Sea, Land and Air Malaise) traps and pitfall traps. Our findings present a proxy for assessing the overall habitat quality for endemic invertebrates, using arthropods as main indicators.From September 2020 to June 2023, a total of 31 SLAM traps were monitored. The traps were set up as follows: seven in Flores (three in mixed forest and four in native forest), 10 in Pico (four in mixed forest and six in native forest) and 14 in Terceira (three in mixed forest and 11 in native forest). Traps were monitored every three months.In addition, we surveyed the epigean fauna in 19 transects with 15 non-attractive pitfall traps per transect. The transects were set up during two weeks at the end of August every year between 2020 and 2023. Eight transects were established in Flores, consisting of one in pasture, four in mixed forest and three in native forest. Six transects were established in Pico, consisting of two in pastures and four in native forest. Five transects were established in Terceira, consisting of two in mixed forest and three in native forest.A total of 243 arthropod taxa were recorded, with 207 identified at the species or subspecies level. These taxa belonged to four classes, 24 orders and 101 families. Out of the 207 identified taxa, 46 were endemic, 60 were native non-endemic, 80 were introduced and 21 were of indeterminate status. Habitat information is also provided, including general habitat and dominant species composition. This publication contributes to the conservation of highly threatened endemic beetles by assessing habitat quality, based on arthropod communities and habitat description (e.g. native or exotic vegetation).Using the Index of Biotic Integrity (IBI) to comparing pre- and post-intervention data, we found no significant change within the epigean community. In contrast, the understorey community sampled with SLAM traps experienced a slight global decrease in biotic integrity over the study period. These findings suggest that the short duration of the study may not be sufficient to detect significant changes, as ecosystem recovery often requires long-term monitoring. The observed changes in the understorey community may be attributed to disturbances from intervention activities, highlighting the need for ongoing monitoring to assess long-term ecological resilience and recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292121PMC
http://dx.doi.org/10.3897/BDJ.12.e124799DOI Listing

Publication Analysis

Top Keywords

mixed forest
20
native forest
20
biotic integrity
16
habitat quality
16
forest native
12
transects established
12
habitat
10
forest
10
life beetles
8
beetles project
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!