When the drilling core method is used to determine the coalbed gas content, the cutting heat generated by the core bit cutting coal will increase the core tube temperature, and the excessively high core tube temperature will have an heating effect on the coal core, which will accelerate the coal core gas desorption rate and increase the gas loss amount. The generation of cutting heat of core bit and the measurement of core tube temperature are the basis for grasping the gas desorption law of coal core and projecting the amount of gas loss. Firstly, the self-developed core tube temperature measurement device was used to conduct on-site core temperature measurement experiments at different cutting speeds. Then, the cutting temperature of core bit was solved by establishing thermodynamic model for cutting coal and heat transfer model of cutting edge. Finally, based on the thermal conductivity characteristics of the core tube, the core tube temperature at different cutting speeds was simulated, and the simulated temperature was compared with the on-site measured temperature to verify the reliability of the model. The results show that when coring in primary structural coal, the temperature change trend of core tube wall temperature measurement point at different cutting speeds is basically consistent, the temperature measurement point at the front end of the core tube mainly goes through a relatively stable period in the drilling process, a sharp rising period in the cutting process, a slow rise and cooling period in the withdrawal process. However, the temperature measurement point at the back end of the core tube wall mainly goes through a relatively stable phase and a slowly increasing phase. The temperature rise of the core bit and the core tube wall are significantly positively correlated with the cutting speed. When coring in hard coal seam and the core depth is not large, the cutting heat generated by the core bit and the coal body is the dominant factor for the temperature rise of the core tube. The core tube wall temperature calculated using the model matches well with the field measured temperature, and the error is small, which fully shows that the coring thermodynamic model is feasible. This study provides a basis for further research on the dynamic distribution characteristic of coal core temperature during coring, which is of profound significance to calculate the gas loss and coalbed gas content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292237PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34207DOI Listing

Publication Analysis

Top Keywords

core tube
52
core
25
tube wall
20
core bit
20
tube temperature
20
temperature measurement
20
temperature
19
cutting heat
16
coal core
16
tube
13

Similar Publications

A Novel Hollow Core Antiresonant Fiber-Based Biosensor for Blood Component Detection in the THz Regime.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, SRM Institute of Science and Technology (Deemed to be University), Tech Park, SRM Nagar, Kattankulathur, Kattankulathur, Tamilnadu, 603203, INDIA.

This article proposes a novel biosensor based on a five-semi-circular cladding tube hollow core antiresonant fiber (HC-ARF) with a frequency range of 0.5-2.8 THz, using Zeonex as the background material.

View Article and Find Full Text PDF

Background: The study evaluated the safety and adequacy of percutaneous transsternal anterior mediastinal core biopsy.

Methods: All percutaneous computed tomography-guided transsternal mediastinal 18-gauge core biopsies performed at 2 academic centers were retrospectively reviewed. Procedural, clinical, and pathology data were recorded.

View Article and Find Full Text PDF

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

Whether the calyx tube of the Korla fragrant pear falls off seriously affects the fruit quality. 'Xinnonglinxiang' is a mutant variety of the Korla fragrant pear, which has a high calyx removal rate under natural conditions, and calyx tube fall seriously affects the fruit quality. The mechanism behind the high calyx removal rate of 'Xinnonglinxiang' remains unclear; thus, Korla fragrant pear (PT) and 'Xinnonglinxiang' (YB) with different degrees of calyx abscission were used as examples and the abscission areas of calyx tubes were collected in the early (21 April), middle (23 April), and late (25 April) shedding stages to explore the regulatory mechanism behind the abscission.

View Article and Find Full Text PDF

Classical preimplantation embryo culture is performed in static fluid environments. Whether a dynamic fluid environment, like the fallopian tube, is beneficial for embryo development remains to be determined across mammalian species. Objectives of these proof-of-concept studies were to determine if controllable dynamic microfluidic culture would enhance preimplantation murine, bovine, and human embryo development compared to static culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!