Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synthetic photochemistry has undergone significant development, largely owing to the development of visible-light-absorbing photocatalysts (PCs). PCs have significantly improved the efficiency and precision of cycloaddition reactions, primarily through energy or electron transfer pathways. Recent research has identified photocatalysis that does not follow energy- or electron-transfer formalisms, indicating the existence of other, undiscovered photoactivation pathways. This study unveils an alternative route: a charge-neutral photocatalytic process called charge-recombinative triplet sensitization (CRTS), a mechanism with limited precedents in synthetic chemistry. Our investigations revealed CRTS occurrence in DeMayo-type [2 + 2] cycloaddition reactions catalyzed by indole-fused organoPCs. Our mechanistic investigations, including steady-state and transient spectroscopic analyses, electrochemical investigations, and quantum chemical calculations, suggest a mechanism involving substrate activation through photoinduced electron transfer, followed by charge recombination, leading to substrate triplet state formation. Our findings provide valuable insights into the underlying photocatalytic reaction mechanisms and pave the way for the systematic design and realization of innovative photochemical processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290448 | PMC |
http://dx.doi.org/10.1039/d4sc02601b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!