The fraction of absorbed photosynthetically active radiation (FAPAR) and the photosynthesis rate (Pn) of maize canopies were identified as essential photosynthetic parameters for accurately estimating vegetation growth and productivity using multispectral vegetation indices (VIs). Despite their importance, few studies have compared the effectiveness of multispectral imagery and various machine learning techniques in estimating these photosynthetic traits under high vegetation coverage. In this study, seventeen multispectral VIs and four machine learning (ML) algorithms were utilized to determine the most suitable model for estimating maize FAPAR and Pn during the and seasons at Tamil Nadu Agricultural University, Coimbatore, India. Results demonstrate that indices such as OSAVI, SAVI, EVI-2, and MSAVI-2 during the and MNDVIRE and MSRRE during the season outperformed others in estimating FAPAR and Pn values. Among the four ML methods of random forest (RF), extreme gradient boosting (XGBoost), support vector regression (SVR), and multiple linear regression (MLR) considered, RF consistently showed the most effective fitting effect and XGBoost demonstrated the least fitting accuracy for FAPAR and Pn estimation. However, SVR with R = 0.873 and RMSE = 0.045 during the and MLR with R = 0.838 and RMSE = 0.053 during the season demonstrated higher fitting accuracy, particularly notable for FAPAR prediction. Similarly, in the prediction of Pn, MLR showed higher fitting accuracy with R = 0.741 and RMSE = 2.531 during the and R = 0.955 and RMSE = 1.070 during the season. This study demonstrated the potential of combining UAV-derived VIs with ML to develop accurate FAPAR and Pn prediction models, overcoming VI saturation in dense vegetation. It underscores the importance of optimizing these models to improve the accuracy of maize vegetation assessments during various growing seasons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292552 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e34117 | DOI Listing |
Sci Data
December 2024
Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.
In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.
View Article and Find Full Text PDFBMC Med Educ
December 2024
Department of Orthopedics, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, 151203, India.
Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.
View Article and Find Full Text PDFBMC Public Health
December 2024
Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.
View Article and Find Full Text PDFAcad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!