The circular economy (CE) is reasoned to organize complex systems supporting sustainable resilience by distinguishing between waste materials and economic growth. This is crucial to the electronic waste (e-waste) industry of developed countries, and e-waste operation management has become their top priority because e-waste contains toxic materials and valuable sources of elements. In the UK, although London Metropolitan city boasts an ambitious sustainable resilience target underlying the context of CE, practical implementation has yet to be feasible, with few investigations detailing if and how the existing target implications enable industrial and social-ecological sectors to continue their performance functionalities in the face of undesired disruptions. In this paper, a dynamic Bayesian Network (dynamic BN) approach is developed to address a range of potential risks. The existing London e-waste operation management is considered as an application of study for sustainable resilience development. Through the utilization of dynamic BN, a comprehensive analysis yields a Resilience Index (RI) of 0.5424, coupled with a StdDev of 0.01350. These metrics offer a profound insight into the intricate workings of a sustainable system and its capacity to swiftly rebound from unexpected shocks and disturbances. This newfound understanding equips policymakers with the knowledge needed to navigate the complexities of sustainable e-waste management effectively. The implications drawn from these in-depth analyses furnish policymakers with invaluable information, enabling them to make judicious decisions that advance the cause of sustainable e-waste management. The findings underscore that the absorptive capacity of a sustainable and resilient e-waste operation management system stands as the foremost defense mechanism against unforeseen challenges. Furthermore, it becomes evident that two pivotal factors, namely "diversifying the supply chain" and "enhancing supply chain transparency," play pivotal roles in augmenting the sustainability and resilience of e-waste operation management within the context of London's ambitious sustainability targets. These factors are instrumental in steering the trajectory of e-waste management towards a more sustainable and resilient future, aligning with London's aspirations for a greener and more eco-conscious future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292517PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34071DOI Listing

Publication Analysis

Top Keywords

e-waste management
16
e-waste operation
16
operation management
16
sustainable resilient
12
sustainable resilience
12
e-waste
10
sustainable
9
resilient e-waste
8
management
8
circular economy
8

Similar Publications

Recyclability and recovery of carbon from waste printed circuit boards within a circular economy perspective: A review.

J Environ Manage

January 2025

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada. Electronic address:

Waste printed circuit boards (WPCBs) are a significant component of electronic waste (e-waste) and are among the fastest-generating waste flows. The potentially negative impacts caused by e-waste on the environment and human health pose an increasingly apparent threat to people's everyday lives and well-being. The nonmetallic fraction (predominantly carbon) of WPCBs is characterized by heavy weight, low resource value, and complex composition, and these characteristics significantly restrict the recycling of the WPCBs to achieve a circular economy.

View Article and Find Full Text PDF

Selective gold extraction from e-waste leachate via sulfur-redox mechanisms using sulfhydryl-functionalized MOFs.

Water Res

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:

Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.

View Article and Find Full Text PDF

The widespread adoption of electronic devices has enhanced living standards but has also led to a surge in electronic waste (e-waste), creating serious environmental and health challenges. Although various methods exist to recover valuable metals from e-waste, each has notable drawbacks. Among these, chemical leaching with aqua regia is widely used but is both highly corrosive and hazardous.

View Article and Find Full Text PDF

The escalating annual growth rate of electronic waste, commonly referred to as "e-waste," is currently between 3 % and 5 %, indicating a rapidly increasing solid waste stream. In 2019, South Korea generated 15.8 kg of e-waste per capita.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!