Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report on structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an reconstitution analysis to assess the production of analogs of the final product as well as several early-stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291136 | PMC |
http://dx.doi.org/10.1101/2024.07.26.605314 | DOI Listing |
Nature
December 2024
Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, QC, Canada.
Biomol NMR Assign
December 2024
Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product.
View Article and Find Full Text PDFACS Chem Biol
December 2024
Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-oskaa, Osaka 577-8502, Japan.
Nonribosomal peptides (NRPs), one of the most widespread secondary metabolites in nature, with therapeutically significant activities, are biosynthesized by modular nonribosomal peptide synthetases (NRPSs). Aryl acids contribute to the structural diversity of NRPs as well as nonproteinogenic amino acids and keto acids. We previously confirmed that a single Asn-to-Gly substitution in the 2,3-dihydroxybenzoic acid-activating adenylation (A) domain EntE involved in enterobactin biosynthesis accepts monosubstituted benzoic acid derivatives with nitro, cyano, bromo, and iodo functionalities at the 2 or 3 positions.
View Article and Find Full Text PDFChem Soc Rev
January 2025
CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities.
View Article and Find Full Text PDFACS Chem Biol
December 2024
Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States.
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!