Most X-ray sources are inherently polychromatic. Polychromatic ("pink") X-rays provide an efficient way to conduct diffraction experiments as many more photons can be used and large regions of reciprocal space can be probed without sample rotation during exposure-ideal conditions for time-resolved applications. Analysis of such data is complicated, however, causing most X-ray facilities to discard >99% of X-ray photons to obtain monochromatic data. Key challenges in analyzing polychromatic diffraction data include lattice searching, indexing and wavelength assignment, correction of measured intensities for wavelength-dependent effects, and deconvolution of harmonics. We recently described an algorithm, Careless, that can perform harmonic deconvolution and correct measured intensities for variation in wavelength when presented with integrated diffraction intensities and assigned wavelengths. Here, we present Laue-DIALS, an open-source software pipeline that indexes and integrates polychromatic diffraction data. Laue-DIALS is based on the dxtbx toolbox, which supports the DIALS software commonly used to process monochromatic data. As such, Laue-DIALS provides many of the same advantages: an open-source, modular, and extensible architecture, providing a robust basis for future development. We present benchmark results showing that Laue-DIALS, together with Careless, provides a suitable approach to the analysis of polychromatic diffraction data, including for time-resolved applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291052PMC
http://dx.doi.org/10.1101/2024.07.23.604358DOI Listing

Publication Analysis

Top Keywords

diffraction data
16
polychromatic diffraction
12
laue-dials open-source
8
open-source software
8
time-resolved applications
8
monochromatic data
8
measured intensities
8
data laue-dials
8
data
7
polychromatic
6

Similar Publications

We report the synthesis, structural characterization and magnetic properties of Kcoronene, and demonstrate a computational screening workflow designed to accelerate the discovery of metal intercalated polycyclic aromatic hydrocarbon (PAH), a class of materials of interest following reports of superconductivity, but lacking demonstrated and understood characterised material compositions. Coronene is identified as a suitable PAH candidate from a library of PAHs for potassium intercalation by computational screening of their electronic structure and of the void space in their crystal structures, targeting LUMO similarity to C and the availability of suitable sites to accommodate inserted cations. Convex hull calculations with energies from crystal structure prediction based on ion insertion into the identified void space of coronene suggest that the = 3 composition in K coronene is stable at 0 K, reinforcing the suitability of coronone for experimental investigation.

View Article and Find Full Text PDF

Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.

View Article and Find Full Text PDF

Synthetic hydroxyapatite (HA) materials with antibacterial and biocompatible properties have potential for biomedical applications. The application of various computational methods is highly relevant for the optimal development of modern materials. In this work, we used molecular docking to determine the binding constants of tetracycline (TET) and quercetin (QUE) with hydroxyapatite and compared them to experimental data of the adsorption of tetracycline (TET) and quercetin (QUE) on the HA surface.

View Article and Find Full Text PDF

Introduction: Silver nanoparticles (AgNPs) derived from natural sources have garnered significant attention due to their unique properties and eco-friendly production methods. With lung cancer remaining a major global health issue, there is a continuous need for novel and effective therapeutic approaches beyond conventional treatments such as chemotherapy, immunotherapy, and targeted therapies.

Objective: This study aims to synthesize AgNPs using plant extracts from Gymnema sylvestre, Moringa oleifera, and Azadirachta indica and to evaluate their anticancer activity, particularly their effects on gene expression in A549 lung cancer cells.

View Article and Find Full Text PDF

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!