Many remarkable innovations have repeatedly occurred across vast evolutionary distances. When convergent traits emerge on the tree of life, they are sometimes driven by the same underlying gene families, while other times many different gene families are involved. Conversely, a gene family may be repeatedly recruited for a single trait or many different traits. To understand the general rules governing convergence at both genomic and phenotypic levels, we systematically tested associations between 56 binary metabolic traits and gene count in 14,710 gene families from 993 species of yeasts. Using a recently developed phylogenetic approach that reduces spurious correlations, we discovered that gene family expansion and contraction was significantly linked to trait gain and loss in 45/56 (80%) of traits. While 601/746 (81%) of significant gene families were associated with only one trait, we also identified several 'keystone' gene families that were significantly associated with up to 13/56 (23%) of all traits. These results indicate that metabolic innovations in yeasts are governed by a narrow set of major genetic elements and mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291092 | PMC |
http://dx.doi.org/10.1101/2024.07.22.604484 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFGenes Genomics
January 2025
Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
Syst Parasitol
January 2025
Pacific branch of the Federal State Budget Scientific Institution "Russian Federal Research Institute of Fisheries and Oceanography", 4 Alley Shevchenko, Vladivostok, Russian Federation, 690091.
Opistholecithum sandugaense n. g. n.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!