AI Article Synopsis

  • Cancer research often relies on univariable survival analysis to evaluate genes' prognostic value, which can overlook important gene relationships and information, especially for a specific group of genes called UMOP genes.
  • The Cancer Gene Prognosis Atlas (CGPA) is introduced as a user-friendly platform that enhances gene-centric biomarker research by enabling in-depth and customizable prognostic analysis, exploring gene pairs and their biological implications.
  • CGPA provides tools for both private and public data analysis, supports multi-gene panel assessments, and features a specialized portal for investigating prognostic gene modules in cancer immunotherapy, empowering researchers without statistical backgrounds to advance biomarker discovery and validation.

Article Abstract

Cancer transcriptomic data are used extensively to interrogate the prognostic value of targeted genes, yet basic scientists and clinicians have predominantly relied on univariable survival analysis for this purpose. This method often fails to capture the full prognostic potential and contextual relevance of the genes under study, inadvertently omitting a group of genes we term univariable missed-opportunity prognostic (UMOP) genes. Recognizing the complexity of revealing multifaceted prognostic implications, especially when extending the analysis to include various covariates and thresholds, we present the Cancer Gene Prognosis Atlas (CGPA). This platform greatly enhances gene-centric biomarker research across cancer types by offering an interactive and user-friendly interface for highly customized, in-depth prognostic analysis. CGPA notably supports data-driven exploration of gene pairs and gene-hallmark relationships, elucidating key composite biological mechanisms like synthetic lethality and immunosuppression. It further expands its capabilities to assess multi-gene panels using both public and user-provided data, facilitating a seamless mechanism-to-machine analysis. Additionally, CGPA features a designated portal for discovering prognostic gene modules using curated cancer immunotherapy data. Ultimately, CGPA's comprehensive, accessible tools allow cancer researchers, including those without statistical expertise, to precisely investigate the prognostic landscape of genes, customizing the model to fit specific research hypotheses and enhancing biomarker discovery and validation through a synergy of mechanistic and data-driven strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291084PMC
http://dx.doi.org/10.1101/2024.07.19.604345DOI Listing

Publication Analysis

Top Keywords

cancer gene
8
gene prognosis
8
prognosis atlas
8
prognostic
7
cancer
6
genes
5
cgpa
4
cgpa multi-context
4
multi-context insights
4
insights cancer
4

Similar Publications

Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

Comprehensive characterization of the transcriptional landscape in Alzheimer's disease (AD) brains.

Sci Adv

January 2025

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.

Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!