Influenza B viruses have co-circulated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we perform the membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant to explore its pH-dependent conformational switch. Simulations capture the activation as the first histidine (His19) protonates and reveal the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and pre-protonated His27. Crucially, we provide an atomic-level understanding of the symmetric proton conduction by identifying pre-activating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible anti-flu drug design efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291123 | PMC |
http://dx.doi.org/10.1101/2024.07.26.605324 | DOI Listing |
Int J Mol Sci
January 2025
A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen 37077, Germany.
Theoretical and simulated analyses of selective homonuclear dipolar recoupling sequences serve as primary tools for understanding and determining the robustness of these sequences under various conditions. In this article, we investigate the recently proposed first-order dipolar recoupling sequence known as MODIST (Modest Offset Difference Internuclear Selective Transfer). We evaluate the MODIST transfer efficiency, assessing its dependence on rf-field strengths and the number of simulated spins, extending up to 10 spins.
View Article and Find Full Text PDFChemistry
January 2025
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
The currently circulating S31N variant of the M2 proton channel of influenza A is resistant to antiviral drugs. Recently, there has been a growing concern regarding the impact of the lipid environment on the structural features of the S31N variant. The native symmetry of the M2 tetramer remains controversial.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!