Integrating Phylogenies with Chronology to Assemble the Tree of Life.

bioRxiv

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA.

Published: July 2024

Reconstructing the global Tree of Life necessitates computational approaches to integrate numerous molecular phylogenies with limited species overlap into a comprehensive supertree. Our survey of published literature shows that individual phylogenies are frequently restricted to specific taxonomic groups due to the expertise of investigators and molecular evolutionary considerations, resulting in any given species present in a minuscule fraction of phylogenies. We present a novel approach, called the chronological supertree algorithm (Chrono-STA), that can build a supertree of species from such data by using node ages in published molecular phylogenies scaled to time. Chrono-STA builds a supertree of organisms by integrating chronological data from molecular timetrees. It fundamentally differs from existing approaches that generate consensus phylogenies from gene trees with missing taxa, as Chrono-STA does not impute nodal distances, use a guide tree as a backbone, or reduce phylogenies to quartets. Analyses of simulated and empirical datasets show that Chrono-STA can combine taxonomically restricted timetrees with extremely limited species overlap. For such data, approaches that impute missing distances or assemble phylogenetic quartets did not perform well. We conclude that integrating phylogenies via temporal dimension enhances the accuracy of reconstructed supertrees that are also scaled to time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291004PMC
http://dx.doi.org/10.1101/2024.07.17.603989DOI Listing

Publication Analysis

Top Keywords

integrating phylogenies
8
tree life
8
molecular phylogenies
8
limited species
8
species overlap
8
scaled time
8
phylogenies
7
phylogenies chronology
4
chronology assemble
4
assemble tree
4

Similar Publications

Deep learning has previously shown success in automatically generating morphological traits which carry a phylogenetic signal. In this paper we explore combining molecular data with deep learning derived morphological traits from images of pinned insects to generate total-evidence phylogenies and we reveal challenges. Deep learning derived morphological traits, while informative, underperform when used in isolation compared to molecular analyses.

View Article and Find Full Text PDF

Multiplexed transcriptomic analyzes of the plant embryonic hourglass.

Nat Commun

January 2025

School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.

Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.

View Article and Find Full Text PDF

Shrews in the genus Episoriculus are among the least-known mammals in China, where representatives occur mainly in the Himalayan and Hengduan mountains. We sequence one mitochondrial and three nuclear genes from 77 individuals referable to this genus, collect morphometric data for five shape and 11 skull measurements from 56 specimens, and use museum collections and GenBank sequences to analyze phylogenetic relationships between this and related genera in an integrated molecular and morphometric approach. Whereas historically anywhere from two to eight species have been recognized in this genus, we conclude that six (Episoriculus baileyi, E.

View Article and Find Full Text PDF

Recording Lineage History with Cellular Barcodes in the Mammary Epithelium and in Breast Cancer.

Adv Exp Med Biol

January 2025

Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France.

Lineage tracing methods have extensively advanced our understanding of physiological cell behaviour in vivo and in situ and have vastly contributed to decipher the phylogeny and cellular hierarchies during normal and tumour development. In recent years, increasingly complex systems have been developed to track thousands of cells within a given tissue or even entire organisms. Cellular barcoding comprises all techniques designed to genetically label single cells with unique DNA sequences or with a combination of fluorescent proteins, in order to trace their history and lineage production in space and time.

View Article and Find Full Text PDF

Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning.

Cell Host Microbe

January 2025

Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:

Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!