Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291258PMC
http://dx.doi.org/10.3389/fimmu.2024.1428584DOI Listing

Publication Analysis

Top Keywords

ion radiotherapy
12
cancer treatment
12
renal cell
8
cell carcinoma
8
treatment combination
8
immune checkpoint
8
carbon ion
8
treatment
5
radiotherapy
5
rcc
5

Similar Publications

Objective: To evaluate the efficacy of photobiomodulation therapy (PBMT) and bethanechol chloride (BC) on the quantity and quality of saliva in patients undergoing radiotherapy (RT) for head and neck cancer.

Methods: Saliva samples were collected from patients before and after RT, who were treated with PBMT or BC. Clinical parameters, including salivary flow rate (SFR), pH, xerostomia, and concentrations of macro and microelements in saliva, were assessed.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is notably resistant to conventional chemotherapy and radiation treatment. However, clinical trials indicate that carbon ion radiotherapy (CIRT) with concurrent gemcitabine is effective for unresectable locally advanced PDAC. This study aimed to identify patient characteristics predictive of CIRT response.

View Article and Find Full Text PDF

Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the Cu complex of 1,8-bis(2-hydroxybenzyl)-cyclam (HL), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible.

View Article and Find Full Text PDF

Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.

View Article and Find Full Text PDF

Background: Unlike conventional photon radiotherapy, particle therapy has the advantage of dose distribution. Carbon-ion radiotherapy is also advantageous in terms of biological effectiveness and other radiobiological aspects. These benefits lead to a higher response probability for previously known radioresistant tumor types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!