Introduction: As an exceptional geographical entity, the vegetation of the Qinghai-Tibetan Plateau (QTP) exhibits high sensitivity to climate change. The Baima Snow Mountain National Nature Reserve (BNNR) is located in the south-eastern sector of the QTP, serving as a transition area from sub-tropical evergreen broadleaf forest to high-mountain vegetation. However, there has been limited exploration into predicting the temporal and spatial variability of vegetation cover using anti-interference methods to address outliers in long-term historical data. Additionally, the correlation between these variables and environmental factors in natural forests with complex terrain has rarely been analyzed.
Methods: This study has developed an advanced approach based on TS (Theil-Sen slope estimator) MK (Mann-Kendall test)-FVC (fractional vegetation cover) to accurately evaluate and predict the time and spatial shifts in FVC within the BNNR, utilizing the GEE (Google Earth Engine). The satellite data utilized in this paper consisted of Landsat images spanning from 1986 to2020. By integrating TS and MK methodologies to monitor and assess the FVC trend, the Hurst index was employed to forecast FVC. Furthermore, the association between FVC and topographic factors was evaluated, the partial correlation between FVC and climatic influences was analyzed at the pixel level (30×30m).
Results And Discussion: Here are the results of this research: (1) Overall, the FVC of the BNNR exhibits a growth trend, with the mean FVC value increasing from 59.40% in 1986 to 68.67% in 2020. (2) The results based on the TS-MK algorithm showed that the percentage of the area of the study area with an increasing and decreasing trend was 59.03% (significant increase of 28.04%) and 22.13% (significant decrease of 6.42%), respectively. The coupling of the Hurst exponent with the Theil-Sen slope estimator suggests that the majority of regions within the BNNR are projected to sustain an upward trend in FVC in the future. (3) Overlaying the outcomes of TS-MK with the terrain factors revealed that the FVC changes were notably influenced by elevation. The partial correlation analysis between climate factors and vegetation changes indicated that temperature exerts a significant influence on vegetation cover, demonstrating a high spatial correlation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291374 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1363690 | DOI Listing |
Med Vet Entomol
January 2025
Department of Chemistry and Biology, Universidade Estadual do Maranhão, Caxias, Brazil.
Land use and cover changes lead to fragmentation of the natural habitats of sand flies and modify the epidemiological profile of leishmaniasis. This process contributes to the infestation of adjacent rural settlements by vector sand fly species with different degrees of adaptation, promoting leishmaniasis outbreaks. This study aimed to assess land use and cover changes over a 12-year period and investigate the diversity and abundance of sand fly assemblages in the rural area of Codó, Maranhão State, Brazil.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Forest Science, College of Agriculture, University of São Paulo (ESALQ), Av. Padua Dias, 11, Caixa Postal 9, 13418-900 Piracicaba, SP, Brazil.
Forest restoration has been a common practice to safeguard water quality and stream health but it is unclear to which extent and pace forest restoration recovers stream ecosystem structure and functions. Also, stream health might be affected by the forest restoration type and the quality of the interventions. Here, we sought to evaluate the recovery of stream habitat and water quality through forest restoration in catchments dominated by pasturelands, and explored the relationship between landscape structure and stream ecosystem recovery.
View Article and Find Full Text PDFSci Total Environ
January 2025
National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA.
Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.
View Article and Find Full Text PDFData Brief
June 2024
Joint Research Center, European Commission, Ispra, Italy.
Urban focused semantically segmented datasets (e.g. ADE20k or CoCo) have been crucial in boosting research and applications in urban areas by providing rich sources of delineated objects in Street View Images (SVI).
View Article and Find Full Text PDFEcol Appl
January 2025
Division of Natural Resources, Park Operations Department, Cleveland Metroparks, Cleveland, Ohio, USA.
Human-caused conversion of natural habitat areas to developed land cover represents a major driver of habitat loss and fragmentation, leading to reorganization of biological communities. Although protected areas and urban greenspaces can preserve natural systems in fragmented landscapes, their efficacy has been stymied by the complexity and scale-dependency underlying biological communities. While migratory bird communities are easy to-study and particularly responsive to anthropogenic habitat alterations, prior studies have documented substantial variation in habitat sensitivity across species and migratory groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!