Semi-biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c-type cytochromes (c-Cyts) and electrically conductive protein filaments (e-PFs) made of polymerized c-Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri-KN400 co-culture with a synthetic photosensitizer, carbon nitride, demonstrates that c-Cyts and e-PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long-term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi-biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202409192 | DOI Listing |
Molecules
December 2024
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China. Electronic address:
6PPD-quinone (6PPD-Q) as a derivative of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), is attracting intensive attention due to the significant hazard to ecosystems. However, the effective management of this type of contaminant has been scarcely reported. Hydrangea-like hollow O, Cl-codoped graphite-phase carbon nitride microspheres (HHCN), featuring open pores were readily prepared by molecular self-assembly and utilized to address 6PPD-Q in an aqueous system for the first time.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People's Republic of China.
J Colloid Interface Sci
January 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!