Drug-resistant bacterial infections pose a significant challenge in the field of bacterial disease treatment. Finding new antibacterial pathways and targets to combat drug-resistant bacteria is crucial. The bacterial quorum sensing (QS) system regulates the expression of bacterial virulence factors. Inhibiting bacterial QS and reducing bacterial virulence can achieve antibacterial therapeutic effects, making QS inhibition an effective strategy to control bacterial pathogenicity. This article mainly focused on the PqsA protein in the QS system of Pseudomonas aeruginosa. An affinity chromatography medium was developed using the SpyTag/SpyCatcher heteropeptide bond system. Berberine, which can interact with the PqsA target, was screened from Phellodendron amurense by affinity chromatography. We characterized its structure, verified its inhibitory activity on P. aeruginosa, and preliminarily analyzed its mechanism using molecular docking technology. This method can also be widely applied to the immobilization of various protein targets and the effective screening of active substances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202400222DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
pseudomonas aeruginosa
8
phellodendron amurense
8
bacterial virulence
8
affinity chromatography
8
bacterial
7
screening isolation
4
isolation quorum
4
sensing inhibitors
4
inhibitors pseudomonas
4

Similar Publications

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

This review discusses the chemical properties, synthesis and detection, and biological functions of a molecular group of cis-2-unsaturated fatty acids, containing fatty acid carbon chains of various lengths and cis double-bond configurations, known as the diffusible signaling factor family (DSFF). Early postulation of the conserved nature of the DSFF among Gram-negative bacteria have now been challenged by the latest evidences that unraveled their presence in a various other distinct microorganisms. Over the last decade, a significant depth and breadth of understanding has been made on the multifaceted functions of DSFFs among bacteria, and their interactions with evolutionarily divergent fungi, plants insects and small animals.

View Article and Find Full Text PDF

Quorum sensing (QS) is a mechanism of intercellular communication that enables microbes to alter gene expression and adapt to the environment. This cell-cell signaling is necessary for intra- and interspecies behaviors such as virulence and biofilm formation. While QS has been extensively studied in bacteria, little is known about cell-cell communication in archaea.

View Article and Find Full Text PDF

Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!