Hippocampal area CA2 has garnered attention in recent times owing to its significant involvement in social memory and distinctive plasticity characteristics. Research has revealed that the CA2 region demonstrates a remarkable resistance to plasticity, particularly in the Schaffer Collateral (SC)-CA2 pathway. In this study we investigated the role of Nogo-A, a well-known axon growth inhibitor and more recently discovered plasticity regulator, in modulating plasticity within the CA2 region. The findings demonstrate that blocking Nogo-A in male rat hippocampal slices facilitates the establishment of both short-term and long-term plasticity in the SC-CA2 pathway, while having no impact on the Entorhinal Cortical (EC)-CA2 pathway. Additionally, the study reveals that inhibiting Nogo-A enables association between the SC and EC pathways. Mechanistically, we confirm that Nogo-A operates through its well-known co-receptor, p75 neurotrophin receptor (p75), and its downstream signaling factor such as Rho-associated protein kinase (ROCK), as their inhibition also allows plasticity induction in the SC-CA2 pathway. Additionally, the induction of long-term depression (LTD) in both the EC and SC-CA2 pathways led to persistent LTD, which was not affected by Nogo-A inhibition. Our study demonstrates the involvement of Nogo-A mediated signaling mechanisms in limiting synaptic plasticity within the CA2 region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.23625 | DOI Listing |
Chin J Traumatol
December 2024
Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:
Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.
Neurosci Lett
December 2024
School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.
View Article and Find Full Text PDFTo investigate the influence of cations on the microstructural characteristics of electrochemical reinforcement in soft clay, a study was conducted using three different cationic salt solutions-NaCl, CaCl₂, and FeCl₃-for grouting treatment. Four sets of indoor experiments were performed to examine the reinforcement mechanism of the electrochemical method. The findings indicate that increasing the valence of injected cations significantly affects the electrochemical reinforcement effect and the soil's microstructural properties.
View Article and Find Full Text PDFDent Mater
December 2024
University of São Paulo School of Dentistry, Department of Biomaterials and Oral Biology, Av. Prof. Lineu Prestes, 2227, São Paulo, SP 05508-000, Brazil. Electronic address:
Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.
Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).
J Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!