The confined groundwater of arid sedimentary plains has been disturbed by long-term anthropogenic extraction, and its hydrochemical quality is required for sustainable development. The present research investigates the hydrochemical characteristics, formation, potential health threats, and quality suitability of the confined groundwater in the central North China Plain. Results show that the confined groundwater has a slightly alkaline nature in the study area, predominantly dominated by fresh-soft Cl-Na and HCO-Na types. Water chemistry is governed by water-rock interactions, including dissolution of evaporites and cation exchange. Approximately 97% of the sampled confined groundwaters exceed the prescribed standard for F. It is mainly due to geological factors such as mineral dissolution, cation exchange, and competitive adsorption of HCO and may also be released from compacted soils because of groundwater extraction. Enriched F in the confined groundwater can pose an intermediate and higher non-carcinogenic risk to more than 90% of the population. It poses the greatest health threat to the population in the north-eastern part of the study area, especially to infants and children. For sustainable development, the long-term use of confined groundwater for irrigation in the area should be avoided, and attention should also be paid to the potential soil salinization and infiltration risks. In the study area, 97% of the confined groundwaters are found to be excellent or good quality for domestic purposes based on Entropy-weighted Water Quality Index. However, the non-carcinogenic health risk caused by high contents of F cannot be ignored. Therefore, it is recommended that differential water supplies should be implemented according to the spatial heterogeneity of confined groundwater quality to ensure the scientific and rational use of groundwater resources. PRACTITIONER POINTS: The hydrochemistry quality of confined groundwater in an arid sedimentary plain disturbed by long-term anthropogenic extraction was investigated. The suitability of confined groundwater for multiple purposes such as irrigation and drinking were evaluated. The hydrochemical characteristics and formation mechanism of confined groundwater under the influence of multiple factors were revealed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wer.11088 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
School of Engineering, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia.
Injecting CO into deep geological formations can be an effective carbon removal and storage technology to mitigate global climate change. Interaction of injected CO with rock formations changes pH and hydrochemistry within the deep injection zone (> 800 m depth). However, cap rocks and multiple tight aquitards typically act as barriers to protect the shallow aquifer from changes in the injection zone.
View Article and Find Full Text PDFWater Res
January 2025
Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
Zero-valent iron (ZVI) has demonstrated high potential for in-situ remediation of contaminated groundwater and soils. Upon exposure to oxygen, ZVI generates reactive oxygen species (ROS). In parallel with the electron transfer mediated-reductive path, ROS plays a critical role in the oxidative degradation of organic pollutants during ZVI remediation of groundwater and soil.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.
The contamination of groundwater with geogenic ammonium (NH) across various geological backgrounds has garnered significant attention, particularly in coastal aquifer systems. However, there remains a gap in our understanding of the mechanisms governing the spatial variability of NH in coastal groundwater at a macroscopic scale. In this study, we collected the sediment samples from two boreholes corresponding to high-NH-N and low-NH-N groundwater.
View Article and Find Full Text PDFSci Rep
December 2024
Liaoning Institute of Technology and Equipment for Mineral Resources Development and Utilisation in Higher Educational Institutions, Liaoning Technical University, Fuxin, 123000, Liaoning, China.
Water is one of the most important influences on slope stability in open pit mines. In order to solve the problem of slope stability analysis in multi-aquifer open pit mines, the open pit mine in Block I of Thar Coalfield in Pakistan with multiple aquifers was taken as the research background. The groundwater flow field at different excavation phases was analyzed by numerical simulation method.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!