Antibiotic residues persist in the environment and represent serious health hazards; thus, it is important to develop sensitive and effective detection techniques. This paper presents a bio-inspired way to make water-soluble fluorescent polymer carbon dots (PCDs@PVA) by heating biomass precursors and polyvinyl alcohol (PVA) together. For example, the synthesized PCDs@PVA are very stable with enhanced emission intensity. This property was observed in a wide range of environmental conditions, including those with changing temperatures, pH levels, UV light, and ionic strength. PCDs@PVA detected the antibiotic chlortetracycline (CTCs) with great selectivity against structurally related compounds and a low detection limit of 20 nM, demonstrating outstanding sensitivity and specificity. We confirmed the sensor's practical application through real sample analysis, yielding recovery rates of 98%-99% in samples of milk, honey, and river water. The synthesized PCDs@PVA fluorescence sensor was successfully used for CTCs detection in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4846DOI Listing

Publication Analysis

Top Keywords

synthesized pcds@pva
8
sustainable synthesis
4
synthesis fluorescent
4
fluorescent polymer carbon
4
polymer carbon dots@pva
4
dots@pva sensitive
4
sensitive chlortetracycline
4
detection
4
chlortetracycline detection
4
detection antibiotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!