Coherent polarization control of terahertz (THz) emission is crucial for applications in the THz field. Here, we demonstrate that the polarization of THz waves emitted from graphene through quantum interference can be coherently controlled by varying the relative phase between the co-circularly polarized laser fields. The polarization state of the THz wave emitted from graphene remains linearly polarized, while its direction can be arbitrarily changed by varying the relative phase. This work not only achieves the coherent polarization control of the THz waves emitted from graphene but also promotes the fundamental research of THz photonics in graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.528828DOI Listing

Publication Analysis

Top Keywords

coherent polarization
12
polarization control
12
emitted graphene
12
control terahertz
8
co-circularly polarized
8
polarized laser
8
laser fields
8
thz waves
8
waves emitted
8
varying relative
8

Similar Publications

Magic-NOVEL: Suppressing electron-electron coupling effects in pulsed DNP.

J Chem Phys

January 2025

Center for Quantum and Topological Systems, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

Pulsed dynamic nuclear polarization (DNP) enhances the nuclear magnetic resonance sensitivity by coherently transferring electron spin polarization to dipolar coupled nuclear spins. Recently, many new pulsed DNP techniques such as NOVEL, TOP, XiX, TPPM, and BEAM have been introduced. Despite significant progress, numerous challenges remain unsolved.

View Article and Find Full Text PDF

Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.

View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are brief bursts of radio waves from distant galaxies, and their emission mechanisms are still debated, focusing on processes near a central engine versus shocks at large distances.
  • Researchers measured two scintillation scales for FRB 20221022A, one linked to the Milky Way and the other to its host galaxy, which allowed them to determine the FRB's emission region size to be less than 3 x 10 kilometers.
  • This size contradicts the large-distance model and suggests that the emission likely occurs close to a central compact object, supported by an observed S-shaped polarization angle, indicating a magnetospheric emission process.
View Article and Find Full Text PDF

Purpose: This study aimed to investigate the effect of chlorhexidine (CHX) cavity disinfectant on interfacial microleakage and micro-tensile bond strength (μTBS) of a universal adhesive bonded to dentin in both self-etch (SE) and etch-and-rinse (ER) modes.

Methods: Class I cavities were prepared in the coronal dentin of extracted human teeth and assigned to two etching modes (SE or ER), then subdivided by disinfection with or without CHX (n = 5). Cavities were restored using Single Bond Universal Adhesive and Filtek Z350 XT composite.

View Article and Find Full Text PDF

Spin orbit coupling effect on coherent transport properties of graphene nanoscopic rings in external magnetic field.

Sci Rep

December 2024

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland.

A theoretical investigation of spin-orbit coupling effect on magnetotransport of a monolayer graphene system having the geometry of Aharonov-Bohm interferometer is presented. The spin-orbit interaction is considered in the form of Rashba spin-orbit (RSO) coupling. The problem is studied within atomistic tight-binding approximation in combination with non-equilibrium Green's functions formalism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!