The unique physical and chemical properties make metallic nanoparticles promising for broad applications in many fields. Exploring the dynamics of metallic nanoparticles in optical traps is crucial for exploiting optical tweezers to advance the applications of metallic particles. In this paper, we present a detailed study of the annular optical trapping of gold nanoparticles with azimuthal polarization. Theoretical analysis based on the T-matrix method shows that the gold nanoparticles experience optical forces pointing to the equilibrium position along the radial direction, while there is no force along the azimuthal direction at this equilibrium position. Therefore, a tightly focused azimuthally polarized beam captures gold nanoparticles in an annular region. Experimental measurements of the motion trajectory of the confined gold nanoparticles reveal a donut profile consistent with the theoretical predictions. Our work reported in this paper is expected to deepen our understanding of the interactions between metallic nanoparticles and light and promote the application of metallic nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.527288DOI Listing

Publication Analysis

Top Keywords

metallic nanoparticles
20
gold nanoparticles
16
nanoparticles
9
annular optical
8
optical trapping
8
azimuthally polarized
8
polarized beam
8
equilibrium position
8
metallic
6
trapping metallic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!