Sex hormones differently regulate lipid metabolism genes in primary human hepatocytes.

BMC Endocr Disord

Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, 04103, Leipzig, Germany.

Published: August 2024

Background: Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration.

Methods: Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17β-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses.

Results: A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17β-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17β-estradiol and for APOA5 after testosterone treatment.

Conclusions: Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292922PMC
http://dx.doi.org/10.1186/s12902-024-01663-9DOI Listing

Publication Analysis

Top Keywords

sex hormones
24
expression levels
16
female phhs
16
lipid metabolism
12
metabolism genes
12
mrna levels
12
sex
10
primary human
8
human hepatocytes
8
levels hepatic
8

Similar Publications

There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.

View Article and Find Full Text PDF

Objectives: Sex hormone-binding globulin (SHBG) and testosterone are differentially associated with type 2 diabetes (T2D) risk. We investigated whether these associations differ by HIV and menopausal status in Black South African women living with (WLWH) and without HIV (WLWOH).

Design: Cross-sectional observational.

View Article and Find Full Text PDF

Background: Metabolic health is closely related to testosterone levels, and the cardiometabolic index (CMI) is a novel metabolic evaluation metric that encompasses obesity and lipid metabolism. However, there is currently a lack of research on the relationship between CMI and testosterone, which is the objective of this study.

Methods: This study utilized data from the National Health and Nutrition Examination Survey (NHANES) cycles from 2011 to 2016.

View Article and Find Full Text PDF

Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects.

ACS Sens

January 2025

School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.

Steroid hormones, especially progesterone (P), estradiol (E), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!