Background: T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive.

Methods: GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice.

Results: We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression.

Conclusions: This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292866PMC
http://dx.doi.org/10.1186/s12964-024-01758-9DOI Listing

Publication Analysis

Top Keywords

topk
16
neutrophils infiltration
16
psoriasis-like dermatitis
16
dermatitis mice
12
kinase topk
8
psoriasis
8
neutrophils
8
regulating neutrophils
8
progression psoriasis
8
role topk
8

Similar Publications

Read, Eliminate, and Focus: A reading comprehension paradigm for distant supervised relation extraction.

Neural Netw

January 2025

College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, 300350, China; Tianjin Key Laboratory of Advanced Networking, Tianjin, 300350, China. Electronic address:

Distant supervision aligns the unstructured text to the knowledge base, thereby enabling automatic machine annotation. Nevertheless, this inevitably introduces a considerable amount of noise. Distant supervised relation extraction models aggregate all sentences sharing the same entity pairs into bags and employ various attention mechanisms to reduce the impact of noisy instances.

View Article and Find Full Text PDF

MO-GCN: A multi-omics graph convolutional network for discriminative analysis of schizophrenia.

Brain Res Bull

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China; Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:

The methodology of machine learning with multi-omics data has been widely adopted in the discriminative analyses of schizophrenia, but most of these studies ignored the cooperative interactions and topological attributes of multi-omics networks. In this study, we constructed three types of brain graphs (BGs), three types of gut graphs (GGs), and nine types of brain-gut combined graphs (BGCGs) for each individual. We proposed a novel methodology of multi-omics graph convolutional network (MO-GCN) with an attention mechanism to construct a classification model by integrating all BGCGs.

View Article and Find Full Text PDF

Large language models (LLMs) show promise in healthcare but face challenges with hallucinations, particularly in rapidly evolving fields like diabetes management. Traditional LLM updating methods are resource-intensive, necessitating new approaches for delivering reliable, current medical information. This study aimed to develop and evaluate a novel retrieval system to enhance LLM reliability in diabetes management across different languages and guidelines.

View Article and Find Full Text PDF

We provide efficient support for applications that aim to continuously find pairs of similar sets in rapid streams, such as Twitter streams that emit tweets as sets of words. Using a sliding window model, the top- result changes as new sets enter the window or existing ones leave the window. Specifically, when a set arrives, it may form a new top- result pair with any set already in the window.

View Article and Find Full Text PDF

Graph Neural Networks (GNNs) have achieved great success in learning with graph-structured data. Privacy concerns have also been raised for the trained models which could expose the sensitive information of graphs including both node features and the structure information. In this paper, we aim to achieve node-level differential privacy (DP) for training GNNs so that a node and its edges are protected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!