Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brightness is among the most studied aspects of timbre perception. Psychoacoustically, sounds described as "bright" versus "dark" typically exhibit a high versus low frequency emphasis in the spectrum. However, relatively little is known about the neurocognitive mechanisms that facilitate these metaphors we listen with. Do they originate in universal magnitude representations common to more than one sensory modality? Triangulating three different interaction paradigms, we investigated using speeded classification whether intramodal, crossmodal, and amodal interference occurs when timbral brightness, as modeled by the centroid of the spectral envelope, and pitch height/visual brightness/numerical value processing are semantically congruent and incongruent. In four online experiments varying in priming strategy, onset timing, and response deadline, 189 total participants were presented with a baseline stimulus (a pitch, gray square, or numeral) then asked to quickly identify a target stimulus that is higher/lower, brighter/darker, or greater/less than the baseline after being primed with a bright or dark synthetic harmonic tone. Results suggest that timbral brightness modulates the perception of pitch and possibly visual brightness, but not numerical value. Semantically incongruent pitch height-timbral brightness shifts produced significantly slower reaction time (RT) and higher error compared to congruent pairs. In the visual task, incongruent pairings of gray squares and tones elicited slower RTs than congruent pairings (in two experiments). No interference was observed in the number comparison task. These findings shed light on the embodied and multimodal nature of experiencing timbre.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410849 | PMC |
http://dx.doi.org/10.3758/s13414-024-02934-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!