The objective measurements of the real-world optimization problems are mostly subject to noise which occurs due to several reasons like human measurement or environmental factors. The performance of the optimization algorithm gets affected if the effect of noise is higher than the negligible limit. The previous noise handling optimization algorithms use a large population size or multiple sampling at same region which increases the total count of function evaluations, and few methods work for a particular problem type. To address the above challenges, a Differential Evolution based Noise handling Optimization algorithm (NDE) to solve and optimize noisy bi-objective optimization problems is proposed. NDE is a Differential Evolution (DE) based optimization algorithm where the strategies for trial vector generation and the control parameters of DE algorithm are self-adapted using fuzzy inference system to improve the population diversity along the evolution process. In NDE, explicit averaging based method for denoising is used when the noise level is higher than negligible limit. Extending noise handling method enhances the performance of the optimization algorithm in solving real world optimization problems. To improve the convergence characteristics of the proposed algorithm, a restricted local search procedure is proposed. The performance of NDE algorithm is experimented using DTLZ and WFG problems, which are benchmark bi-objective optimization problems. The obtained results are compared with other SOTA algorithm using modified Inverted Generational Distance and Hypervolume performance metrics, from which it is confirmed that the proposed NDE algorithm is better in solving noisy bi-objective problems when compared to the other methods. To further strengthen the claim, statistical tests are conducted using the Wilcoxon and Friedman rank tests, and the proposed NDE algorithm shows significance over the other algorithms rejecting the null hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294573 | PMC |
http://dx.doi.org/10.1038/s41598-024-68436-1 | DOI Listing |
Sensors (Basel)
December 2024
Xuejiawan Power Supply Company, Ordos 010300, China.
Recently, massive intelligent applications have emerged for the smart grid (SG), such as inspection and sensing. To support these applications, there have been high requirements on wireless communication for the SG, especially in remote areas. To tackle these challenges, a UAV-assisted heterogeneous wireless network is proposed in this paper for the SG, where multiple UAVs and a macro base station collaboratively provide a wide range of communication services.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
This article presents the development of a resistive frost-detection sensor fabricated using Fused Filament Fabrication (FFF) with a conductive filament. This sensor was designed to enhance demand-defrost control in industrial refrigeration systems. Frost accumulation on evaporator surfaces blocks airflow and creates a thermal insulating barrier that reduces heat exchange efficiency, increasing energy consumption and operational costs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
Transformer is a powerful model widely used in artificial intelligence applications. It contains complex structures and has extremely high computational requirements that are not suitable for embedded intelligent sensors with limited computational resources. The binary quantization technology takes up less memory space and has a faster calculation speed; however, it is seldom studied for the lightweight transformer.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
In network function virtualization, the resource demand of network services changes with network traffic. SFC migration has emerged as an effective technique for preserving the quality of service. However, one important problem that has not been addressed in prior studies is how to manage network load while maintaining service-level agreements for time-varying resource demands.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mobile Systems Engineering, Dankook University, Yongin 16890, Republic of Korea.
As proximity-aware services among devices such as sensors, IoT devices, and user equipment are expected to facilitate a wide range of new applications in the beyond 5G and 6G era, managing heterogeneous environments with diverse node capabilities becomes essential. This paper analytically models and characterizes the performance of heterogeneous random access-based wireless mutual broadcast (RA-WMB) with distinct transmit (Tx) power levels, leveraging a marked Poisson point process to account for nodes' various Tx power. In particular, this study enables the performance of RA-WMB with heterogeneous Tx power to be represented in terms of the performance of RA-WMB with a common Tx power by deriving an equivalent Tx power based on the probability distribution of heterogeneous Tx power and the path loss exponent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!