Introduction: Ochratoxins (OTs) are worldwide regulated mycotoxins contaminating a variety of food-environment and agro-environment. Several Aspergillus and Pencillium species synthesize OTs from a six-gene biosynthetic gene cluster (BGC) to produce the highly toxic final product OTA. Although many studies on OTA-degrading enzymes were performed, high efficiency enzymes with strong stability are extremely needed, and the OTA degrading mechanism is poorly understood.
Objectives: The study aimed to explore the OT-degradation enzyme and investigate its degradation mechanisms in Metarhizium, which contain an OT biosynthetic gene cluster.
Methods: Phylogenomic relationship combined with RNA expression analysis were used to explore the distribution of OT BGC in fungi. Bioactivity-guided isolation and protein mass spectrometry were conducted to trace the degrading enzymes in Metarhizium spp., and the enzymes were heterologously expressed in E. coli and verified by in vitro assays. Structure prediction and point mutation were performed to reveal the catalytic mechanism of MbAmh1.
Results: Beyond Aspergillus and Pencillium species, three species of the distant phylogenetic taxon Metarhizium contain an expressed OT-like BGC but lack an otaD gene. Unexpectedly, no OT BGC products were found in some Metarhizium species. Instead, Metarhizium metabolized both OTA and OTB to their non-toxic degradation products. This activity of M. brunneum was attributed to an intracellular hydrolase MbAmh1, which was tracked by bioactivity-guided proteomic analysis combined with in vitro reaction. Recombinant MbAmh1 (5 μg/mL) completely degraded 1 μg/mL OTA within 3 min, demonstrating a strong degrading ability towards OTA. Additionally, MbAmh1 showed considerable temperature adaptability ranging from 30 to 70 °C and acidic pH stability ranging from 4.0 to 7.0. Identification of active sites supported the crucial role of metal iron for this enzymatic reaction.
Conclusion: These findings reveal different patterns of OT synthesis in fungi and provide a potential OTA degrading enzyme for industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2024.07.023 | DOI Listing |
Fungal Biol
November 2024
AgResearch Ltd., Lincoln, New Zealand.
World J Microbiol Biotechnol
September 2024
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
The important role of dihydroxynaphthalene-(DHN) melanin in enhancing fungal stress resistance and its importance in fungal development and pathogenicity are well-established. This melanin also aids biocontrol fungi in surviving in the environment and effectively infecting insects. However, the biosynthetic origin of melanin in the biocontrol agents, Metarhizium spp.
View Article and Find Full Text PDFIMA Fungus
September 2024
Integrative Crop Biotechnology and Management Research Group, Plant-Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
Metarhizium anisopliae (Clavicipitaceae, Hypocreales) is a globally distributed entomopathogenic fungus, which has been largely studied and used in agriculture for its potent entomopathogenicity. Since its taxonomic establishment as a member of Metarhizium, many closely related taxa have been described with highly similar morphology (cryptic species). A holotype specimen of M.
View Article and Find Full Text PDFFront Fungal Biol
August 2024
Crop Diseases, Pest and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S. Department of Agriculture - Agricultural Research Service, Parlier, CA, United States.
Novel tactics for controlling insect pests in perennial fruit and nut crops are needed because target pests often display decreased susceptibility to chemical controls due to overreliance on a handful of active ingredients and regulatory issues. As an alternative to chemical controls, entomopathogenic fungi could be utilized as biological control agents to manage insect pest populations. However, development of field ready products is hampered by a lack of basic knowledge.
View Article and Find Full Text PDFInt Microbiol
August 2024
Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infection with Metarhizium flavoviride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!