Borate bioactive glass enhances 3D bioprinting precision and biocompatibility on a sodium alginate platform via Ca controlled self-solidification.

Int J Biol Macromol

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; University of Science and Technology of China, Hefei 230036, Anhui, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, PR China. Electronic address:

Published: October 2024

Sodium alginate (SA) has gained widespread acclaim as a carrier medium for three-dimensional (3D) bioprinting of cells and a diverse array of bioactive substances, attributed to its remarkable biocompatibility and affordability. The conventional approach for fabricating alginate-based tissue engineering constructs entails a post-treatment phase employing a calcium ion solution. However, this method proves ineffectual in addressing the predicament of low precision during the 3D printing procedure and is unable to prevent issues such as non-uniform alginate gelation and substantial distortions. In this study, we introduced borate bioactive glass (BBG) into the SA matrix, capitalizing on the calcium ions released from the degradation of BBG to incite the cross-linking reaction within SA, resulting in the formation of BBG-SA hydrogels. Building upon this fundamental concept, it unveiled that BBG-SA hydrogels greatly enhance the precision of SA in extrusion-based 3D printing and significantly reduce volumetric contraction shrinkage post-printing, while also displaying certain adhesive properties and electrical conductivity. Furthermore, in vitro cellular experiments have unequivocally established the excellent biocompatibility of BBG-SA hydrogel and its capacity to actively stimulate osteogenic differentiation. Consequently, BBG-SA hydrogel emerges as a promising platform for 3D bioprinting, laying the foundation for the development of flexible, biocompatible electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134338DOI Listing

Publication Analysis

Top Keywords

borate bioactive
8
bioactive glass
8
sodium alginate
8
bbg-sa hydrogels
8
bbg-sa hydrogel
8
glass enhances
4
enhances bioprinting
4
bioprinting precision
4
precision biocompatibility
4
biocompatibility sodium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!