Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) and Enterotoxigenic E. coli (ETEC) have been found to readily develop biofilms on cucumber (Cucumis sativus L.), presenting a significant risk to the safety of ready-to-eat vegetables. This study aimed to assess the effectiveness of the lytic bacteriophage vB_EcoM_SQ17 (SQ17) against EHEC O157:H7 and ETEC biofilms on cucumber. Here, we evaluated the efficacy of phage SQ17 on the formation and reduction of biofilms formed by EHEC O157:H7 and ETEC strains on various surfaces, including polystyrene, poly-d-lysine precoated films, and fresh-cut cucumber, at different temperatures. Phage SQ17 significantly inhibited ETEC biofilm formation, reducing the number of adhered cells by 0.15 log CFU/mL at 37 °C. Treatment with phage SQ17 also significantly decreased the number of adhered cells in established biofilms via SEM observation. Moreover, phage SQ17 effectively reduced the biomass of EHEC O157:H7 and ETEC biofilms by over 54.8 % at 37 °C after 24 h of incubation. Following phage treatment, the viability of adhered EHEC O157:H7 cells decreased by 1.37 log CFU/piece and 0.46 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. Similarly, the viability of ETEC cells decreased by 1.07 log CFU/piece and 0.61 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. These findings suggest that phage SQ17 shows promise as a potential strategy for eradicating pathogenic E. coli biofilms on cucumber.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.106832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!