Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: The rewarding effect of Methamphetamine (METH) is commonly believed to play an important role in METH use disorder. The altered expression of dopamine D1 receptor (D1R) has been suggested to be essential to the rewarding effect of METH. Notably, D1R could interact with histamine H3 receptors (H3R) by forming a H3R-D1R heteromer (H3R-D1R).
Objectives: This study was designed to specifically investigate the involvement of H3R-D1R in the rewarding effect of METH.
Methods: C57BL/6 mice were treated with intraperitoneal injections of a selective H3R antagonist (Thioperamide, THIO; 20 mg/kg), an H1R antagonist (Pyrilamine, PYRI; 10 mg/kg), or microinjections of cytomegalovirus (CMV)-transmembrane domain 5 (TM5) into the nucleus accumbens (NAc). The animal model of Conditioned Place Preference (CPP) was applied to determine the impact of H3R-D1R on the rewarding effect of METH.
Results: METH resulted in a significant preference for the drug-associated chamber, in conjunction with increased H3R and decreased D1R expression in both NAc and the ventral tegmental area (VTA). THIO significantly attenuated the rewarding effect of METH, accompanied by decreased H3R and increased D1R expression. In contrast, pyrilamine failed to produce the similar effects. Moreover, the inhibitory effect of THIO on METH-induced CPP was reversed by SKF38393, a D1R agonist. Furthermore, SCH23390, a D1R antagonist, counteracted the ameliorative effect of SKF38393 on THIO. Co-immunoprecipitation (CO-IP) experiments further demonstrated the specific interaction between H3R and D1R in METH CPP mice. The rewarding effect of METH was also significantly blocked by the interruption of CMV-transmembrane domain 5 (TM5), but not CMV-transmembrane domain 7 (TM7) in NAc.
Conclusion: These results suggest that modulating the activity of H3R-D1R complex holds promise for regulating METH use disorder and serves as a potential drug target for its treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2024.176866 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!