Bioactive polymer composite scaffolds fabricated from 3D printed negative molds enable bone formation and vascularization.

Acta Biomater

Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, UK; Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address:

Published: September 2024

Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels. In vitro assessments demonstrated significant enhancement in cell infiltration, proliferation, and osteogenic differentiation, underscoring the favorable impact of microchannels on cell behavior. High loading efficiency and controlled release of the osteogenic factor BMP-2 were achieved, with microchannels facilitating release of the growth factor. Evaluation in a mouse critical-size calvarial defect model revealed enhanced vascularization and bone formation in microchanneled scaffolds containing BMP-2. This study not only introduces an accessible method for creating multiscale porosity in polyHIPE scaffolds but also emphasizes its capability to enhance cellular infiltration, controlled growth factor release, and in vivo performance. The findings suggest promising applications in bone tissue engineering and regenerative medicine, and are expected to facilitate the translation of this type of biomaterial scaffold. STATEMENT OF SIGNIFICANCE: This study holds significance in the realm of biomaterial scaffold design for bone tissue engineering and regeneration. We demonstrate a novel method to introduce controlled multiscale porosity and microchannels into polyHIPE scaffolds, by utilizing 3D-printed water-dissolvable PVA molds. The strategy offers new possibilities for improving cellular infiltration, achieving controlled release of growth factors, and enhancing vascularization and bone formation outcomes. This microchannel approach not only marks a substantial stride in scaffold design but also demonstrates its tangible impact on enhancing osteogenic cell differentiation and fostering robust bone formation in vivo. The findings emphasize the potential of this methodology for bone regeneration applications, showcasing an interesting advancement in the quest for effective and innovative biomaterial scaffolds to regenerate bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.07.038DOI Listing

Publication Analysis

Top Keywords

bone formation
20
polyhipe scaffolds
16
multiscale porosity
12
bone
10
scaffolds
8
facilitate translation
8
utilizing 3d-printed
8
3d-printed water-dissolvable
8
scaffolds microchannels
8
controlled release
8

Similar Publications

Aims: ultrasound (US) diagnosis of enthesitis is burdened of low specificity, especially when it is performed in patients with psoriasis (PsO) but without clinical psoriatic arthritis (PsA), because of mechanical, dysmetabolic and age-related concurrent enthesopatic changes. We propose a novel US score to quantify the cortical-entheseal bone remodeling burden of several peripheral entheses, aiming to improve the specificity of US for PsA-related enthesitis, and to evaluate its diagnostic value in PsO patients with subsequent diagnosis of psoriatic arthritis (PsO/PsA).

Methods: clinical and US data of 119 consecutive patients with moderate/severe PsO and nonspecific musculoskeletal symptoms, were included in this retrospective study.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

How do lesions affect limb lengthening in children with Ollier's disease?

BMC Musculoskelet Disord

January 2025

Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

Effect of molecular weight and distribution of bovine bone gelatin on the cross-linking gelation induced by transglutaminase.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:

In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!