Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cell (plasma) membrane is enriched with numerous receptors, ligands, enzymes, and phospholipids that play important roles in cell-cell and cell-extracellular matrix interactions governing, for instance, tissue development and repair. We previously showed that plasma membrane nanofragments (PMNFs) act as nucleation sites for bone formation in vivo, and induce in vitro mineralization within 1 day. In this study, we optimized the methods for generating, isolating, and applying PMNFs as a cell-free therapeutic to expedite bone defect repair. The PMNFs were isolated from different mouse cell lines (chondrocytes, osteoblasts, and fibroblasts), pre-conditioned, lyophilized, and subsequently transplanted into 2 mm critical-sized calvarial defects in mice (n = 75). The PMNFs from chondrocytes, following a 3-day pre-incubation, significantly accelerated bone repair within 2 weeks, through a coordinated attraction of macrophages, endothelial cells, and osteoblasts to the healing site. In vitro experiments confirmed that PMNFs enhanced cell adhesion. Comparison of the PMNF efficacy with phosphatidylserine, amorphous calcium phosphate (ACP), and living cells confirmed the unique ability of PMNFs to promote accelerated bone repair. Importantly, PMNFs promoted nearly complete integration of the regenerated bone with native tissue after 6 weeks (% non-integrated bone area = 15.02), contrasting with the partial integration (% non-integrated bone area = 56.10; p < 0.01, Student's test) with transplantation of ACP. Vickers microhardness tests demonstrated that the regenerated bone after 6 weeks (30.10 ± 1.75) exhibited hardness similar to native bone (31.07 ± 2.46). In conclusion, this is the first study to demonstrate that cell membrane can be a promising cell-free material with multifaceted biofunctional properties that promote accelerated bone repair. STATEMENT OF SIGNIFICANCE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.07.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!