Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The development of monitoring protocols is hindered by the great diversity of resistance factors, while the "streetlight effect" denies the possibility of discovering novel drugs based on existing databases. In this study, we address these challenges using high-throughput environmental screening viewed from a trait-based ecological perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with antibiotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthesizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the properties of chemical structures dictate the distribution of the genes responsible for their synthesis across environments. With this understanding, we propose general principles to facilitate the discovery of antibiotics, including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their dissemination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108917 | DOI Listing |
Front Vet Sci
January 2025
Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
Introduction: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance.
View Article and Find Full Text PDFJAC Antimicrob Resist
February 2025
Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
Background: Antimicrobial resistance (AMR) is caused by the use and misuse of antibiotics. AMR is a global health concern, to which penicillin allergy (penA) labels appear to contribute. Patients who have penA labels are treated with non-penicillin antibiotics and receive more antibiotics when compared with patients without penA.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
From a One Health perspective, dogs and cats have begun to be recognized as important reservoirs for clinically significant multidrug-resistant bacterial pathogens. In this study, we investigated the occurrence and genomic features of ESβL producing Enterobacterales isolated from dogs, in the province of Imbabura, Ecuador. We identified four isolates expressing ESβLs from healthy and diseased animals.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Centre for Molecular Biosciences, Ulster University, Coleraine, United Kingdom.
The WHO has compiled a list of pathogens that urgently require new antibiotics in response to the rising reports of antibiotic resistance and a diminished supply of new antibiotics. At the top of this list is fluoroquinolone-resistant , fluoroquinolone-resistant spp. and vancomycin-resistant .
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China.
-associated gastritis (HPAG) is a common condition of the gastrointestinal tract. However, extensive and long-term antibiotic use has resulted in numerous adverse effects, including increased resistance, gastrointestinal dysfunction, and increased recurrence rates. When these concerns develop, traditional Chinese medicine (TCM) may have advantages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!