Due to the pathogen-specific targeting, neutralization capabilities, and enduring efficacy, neutralizing antibodies (NAs) have received widespread attentions as a critical immunotherapeutic strategy against infectious viruses. However, because of the high variability and complexity of pathogens, rapid determination of neutralization activity of antiviral antibodies remains a challenge. Here, we report a new method, named as out-of-plane polarization imaging based single-particle rotational sensing, for rapid analysis of neutralization activity of antiviral antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the spike protein functionalized gold nanorods (AuNRs) and angiotensin-converting enzyme 2 (ACE2) coated gold nanoparticles (AuNPs) as the rotational sensors and chaperone probes, we demonstrated the single-particle rotational sensing strategy for the measurement of rotational diffusion coefficient of the chaperone-bound rotational sensors caused by the specific spike protein-ACE2 interactions. This enables us to measure the neutralizing activity of neutralizing antibody from the analysis of dose-dependent changes in rotational diffusion coefficient (Dr) of the rotational sensors upon the treatment of SARS-CoV-2 antibody. With this technique, we achieved the quantitative determination of neutralization activity of a commercially available SARS-CoV-2 antibody (IC50, 294.1 ng/mL) with satisfying accuracy and anti-interference ability. This simple and robust method holds the potential for rapid and accurate evaluation of neutralization activity against different pathogenic viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126606 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!