Phosphate (P) and nitrogen (N) fertilization affect rice tillering, indicating that P- and N-regulated tiller growth has a crucial effect on grain yield. Cytokinins and strigolactones (SLs) promote and inhibit tiller bud outgrowth, respectively; however, the underlying mechanisms are unclear. In this study, tiller bud outgrowth and cytokinin fractions were evaluated in rice plants fertilized at different levels of P and N. Low phosphate or nitrogen (LP or LN) reduced rice tiller numbers and bud elongation, in line with low cytokinin levels in tiller buds and xylem sap as well as low TCSn:GUS expression, a sensitive cytokinin signal reporter, in the stem base. Furthermore, exogenous cytokinin (6-benzylaminopurin, 6-BA) administration restored bud length and TCSn:GUS activity in LP- and LN-treated plants to similar levels as control plants. The TCSn:GUS activity and tiller bud outgrowth were less affected by LP and LN supplies in SL-synthetic and SL-signaling mutants (d17 and d53) compared to LP- and LN-treated wild-type (WT) plants, indicating that SL modulate tiller bud elongation under LP and LN supplies by reducing the cytokinin levels in tiller buds. OsCKX9 (a cytokinin catabolism gene) transcription in buds and roots was induced by LP, LN supplies and by adding the SL analog GR24. A reduced response of cytokinin fractions to LP and LN supplies was observed in tiller buds and xylem sap of the d53 mutant compared to WT plants. These results suggest that cytokinin catabolism and transport are involved in SL-modulated rice tillering fueled by P and N fertilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108982DOI Listing

Publication Analysis

Top Keywords

tiller bud
20
cytokinin catabolism
12
bud elongation
12
phosphate nitrogen
12
bud outgrowth
12
tiller buds
12
tiller
10
cytokinin
9
catabolism transport
8
transport involved
8

Similar Publications

The SLR1-OsMADS23-D14 module mediates the crosstalk between strigolactone and gibberellin signaling to control rice tillering.

New Phytol

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.

Article Synopsis
  • Strigolactones (SLs) and gibberellins (GAs) both inhibit rice branching (tillering), but how they interact at the molecular level is not well understood.
  • The transcription factor OsMADS23 is key in linking SL and GA signaling, where its loss leads to fewer tillers and its overexpression promotes more tiller growth.
  • OsMADS23 interacts with the DELLA protein SLENDER RICE1 (SLR1), enhancing each other's stability, and together they inhibit the expression of the SL receptor gene DWARF14 (D14), demonstrating a complex relationship that regulates rice tillering.
View Article and Find Full Text PDF

Bioenergy sorghum's large and deep nodal root system and associated microbiome enables uptake of water and nutrients from and deposition of soil organic carbon into soil profiles, key contributors to the crop's resilience and sustainability. The goal of this study was to increase our understanding of bioenergy sorghum nodal root bud development. Sorghum nodal root bud initiation was first observed on the stem node of the 7 phytomer below the shoot apex.

View Article and Find Full Text PDF

Shoot branching is a critical determinant of plant architecture and a key factor affecting crop yield. The shoot branching involves two main processes: axillary meristem formation and subsequent bud outgrowth. While considerable progress has been made in elucidating the genetic mechanisms underlying the latter process, our understanding of the former process remains limited.

View Article and Find Full Text PDF

Stimulates Tiller Bud Outgrowth in L. through Strigolactone Signaling Pathway.

Int J Mol Sci

October 2024

Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.

, a () ortholog from rice) is well known for its important role in rice ( L.), controlling floral transition under short-day (SD) conditions. Although the effect of on promoting branching has been found, the underlying mechanism remains largely unknown.

View Article and Find Full Text PDF

Altered expression of amino acid permease OsAAP11 mediates bud outgrowth and tillering by regulating transport and accumulation of amino acids in rice.

Int J Biol Macromol

November 2024

Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China. Electronic address:

Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!