Optimization of the flow cytometry method of detection, quantification and qualification of microorganisms in carrot juice.

Food Chem

Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland. Electronic address:

Published: December 2024

Fresh, unpasteurized carrot juice is a popular element of the everyday diet of many consumers, and as such the matter of the juice's microbial safety remains an important one. Imaging flow cytometry (FCM) allows a fast enumeration and determination of cells, as well as their further differentiation. However, carrot juice is a difficult food product to analyze with the use of FCM due to interference from autofluorescence and the presence of plant debris. In this research, we aimed to obtain an effective and repeatable protocol for the preparation of carrot juice samples for FCM analysis. Through experimental and software-based means we successfully determined a reliable protocol for the preparation of fresh, unpasteurized carrot juice, which consisted of a sequence of filtering, centrifugation, enzyme treatment, and finally the implementation of the Machine Learning protocol for the best result.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140606DOI Listing

Publication Analysis

Top Keywords

carrot juice
20
flow cytometry
8
fresh unpasteurized
8
unpasteurized carrot
8
protocol preparation
8
carrot
5
juice
5
optimization flow
4
cytometry method
4
method detection
4

Similar Publications

High-Pressure Processing Influences Antibiotic Resistance Gene Transfer in Isolated from Food and Processing Environments.

Int J Mol Sci

December 2024

Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland.

The study aimed to assess the high-pressure processing (HPP) impact on antibiotic resistance gene transfer in from food and food processing environments, both in vitro (in microbiological medium) and in situ (in carrot juice), using the membrane filter method. Survival, recovery, and frequency of antibiotic resistance gene transfer analyses were performed by treating samples with HPP at different pressures (200 MPa and 400 MPa). The results showed that the higher pressure (400 MPa) had a significant effect on increasing the transfer frequency of genes such as , encoding fosfomycin resistance, and , , , responsible for tetracycline resistance, both in vitro and in situ.

View Article and Find Full Text PDF

The global challenge of food waste necessitates innovative solutions, such as incorporating carrot pomace, a nutrient-rich by-product of carrot juice production, into beef patties to enhance their nutritional and functional properties. This study evaluated beef patties with carrot pomace added at 0%, 1.0%, 3.

View Article and Find Full Text PDF

Carrots, a globally cultivated root vegetable crop, are renowned for their nutritional and functional properties. However, the deep utilization and development of carrots and their derived products are limited in numerous countries, with a particular deficiency in advanced deep-processing and transformation technologies. Consequently, the value of carrot products is diminished and resources are wasted.

View Article and Find Full Text PDF

This study aimed to isolate salt-tolerant pectinolytic bacteria from the rhizosphere of a salt marsh plant and utilize their pectinases for the clarification of detox juice preparation. Sixteen halophilic bacterial strains were isolated from the rhizospheric soil of . The isolates were screened for pectinase activity, and two strains, ASA21 and ASA29, exhibited the highest pectinase production in the presence of 2.

View Article and Find Full Text PDF

Water kefir (WK) is a nondairy probiotic beverage produced using water kefir grains that are highly adaptable to diverse food substrates. Fruit and vegetables have been used more in beverage production in recent years due to their plentiful nutritional qualities. In this context, the aim of this study is to develop fruit-vegetable juice-based beverages fermented with WK grains in order to produce novel, non-dairy, probiotic water kefir-like beverages (W-KLBs) with improved sensory and nutritional properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!