The Irish Sea and the Baltic Sea are nowadays still the two most Cs-137 contaminated Seas worldwide. However, the origins of this contaminations are completely different. While the Baltic Sea was unintentionally contaminated due to global fallout after the accident in the Chernobyl nuclear powerplant in 1986, the Irish sea was intentionally used for low level liquid radioactive waste discharges from the Sellafield nuclear reprocessing facility (called Windscale until 1981) between the 1950s and 1990s. Nowadays, more than 30 years later, it is still possible to detect these contaminations in fish, water and sediments of both seas. Since fish are an important part of the human diet, monitoring Cs-137 levels in fish is essential for assessing the potential radiation exposure to humans. In 2019 and 2020 two surveys were dedicated to study the current levels of radioactive contamination in fish species from both Seas. During both surveys, fish samples were collected and analysed by gamma spectrometry later on. The results show that the average Cs-137 activity in benthic, demersal and pelagic fish species from the Baltic Sea are 2.7, 4.6 and 4.2, respectively, times higher than the corresponding values of the Irish Sea. Based on this and two other comparisons, it is concluded that the Baltic Sea is the most contaminated with Cs-137.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2024.107510 | DOI Listing |
Viruses
December 2024
Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
In the original publication [...
View Article and Find Full Text PDFPathogens
December 2024
Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, LV-1067 Riga, Latvia.
Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland.
In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Zoological Institute of Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint-Petersburg, Russia.
Predicting which non-indigenous species (NISs) will establish persistent invasive populations and cause significant ecosystem changes remains an important environmental challenge. We analyzed the spatial and temporal dynamics of the entire zoobenthos and the biomass of spp., one of the most successful invaders in the Baltic Sea, in the Neva estuary in 2014-2023.
View Article and Find Full Text PDFISME J
January 2025
Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, 18119 Germany.
Dormancy is a wide-spread key life history trait observed across the tree of life. Many plankton species form dormant cells stages that accumulate in aquatic sediments and under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!