A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding Convolutional Neural Networks From Excitations. | LitMetric

Saliency maps have proven to be a highly efficacious approach for explicating the decisions of convolutional neural networks (CNNs). However, extant methodologies predominantly rely on gradients, which constrain their ability to explicate complex models. Furthermore, such approaches are not fully adept at leveraging negative gradient information to improve interpretive veracity. In this study, we present a novel concept, termed positive and negative excitation (PANE), which enables the direct extraction of PANE for each layer, thus enabling complete layer-by-layer information utilization sans gradients. To organize these excitations into final saliency maps, we introduce a double-chain backpropagation procedure. A comprehensive experimental evaluation, encompassing both binary classification and multiclassification tasks, was conducted to gauge the effectiveness of our proposed method. Encouragingly, the results evince that our approach offers a significant improvement over the state-of-the-art methods in terms of salient pixel removal, minor pixel removal, and inconspicuous adversarial perturbation generation guidance. In addition, we verify the correlation between PANEs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3430978DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural networks
8
saliency maps
8
pixel removal
8
understanding convolutional
4
networks excitations
4
excitations saliency
4
maps proven
4
proven highly
4
highly efficacious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!