A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrothermal-Assisted Photothermal Lubrication Surfaces for Continuous Anti-Icing/Deicing in Multiple Low-Temperature Environments. | LitMetric

Electrothermal-Assisted Photothermal Lubrication Surfaces for Continuous Anti-Icing/Deicing in Multiple Low-Temperature Environments.

Langmuir

Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China.

Published: August 2024

Solving the problem of ice accumulation on solid surfaces is of great significance to the economic development of the country and the safety of people's lives. In this work, a coating with multifunctional photothermal/electrothermal solid-state lubrication (PEL) for anti-icing/deicing was prepared in layers based on the intrinsic properties of silicone oil and paraffin wax in combination with conductive graphite and multiwalled carbon nanotubes. Silicone oils and paraffins are used as lubricating media giving the coating excellent lubricity, which results in a water sliding angle (SA) of only 12° on the PEL surface. Meanwhile, PEL shows favorable static and dynamic ice resistance at low temperatures; at -10 °C, the freezing time of water droplets on the PEL surface is extended by at least 4 times compared to the bare substrate. Furthermore, PEL also offers highly efficient photothermal and electrothermal deicing performance, which can effectively remove the accumulated ice at a light intensity of 0.6 kW/m or an EPD of 0.1 W/cm. Meanwhile, the synergistic deicing mechanism of photothermal and electrothermal was verified at -20 °C. Interestingly, the coating shows heat-assisted healing ability due to the phase change characteristic of paraffin wax, which allows the coating to regain lubricating properties after mechanical abrasion. Therefore, this work provides a reliable way for the design of stable all-weather anti-icing/deicing strategies at low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02419DOI Listing

Publication Analysis

Top Keywords

paraffin wax
8
pel surface
8
low temperatures
8
photothermal electrothermal
8
pel
5
electrothermal-assisted photothermal
4
photothermal lubrication
4
lubrication surfaces
4
surfaces continuous
4
continuous anti-icing/deicing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!