Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solving the problem of ice accumulation on solid surfaces is of great significance to the economic development of the country and the safety of people's lives. In this work, a coating with multifunctional photothermal/electrothermal solid-state lubrication (PEL) for anti-icing/deicing was prepared in layers based on the intrinsic properties of silicone oil and paraffin wax in combination with conductive graphite and multiwalled carbon nanotubes. Silicone oils and paraffins are used as lubricating media giving the coating excellent lubricity, which results in a water sliding angle (SA) of only 12° on the PEL surface. Meanwhile, PEL shows favorable static and dynamic ice resistance at low temperatures; at -10 °C, the freezing time of water droplets on the PEL surface is extended by at least 4 times compared to the bare substrate. Furthermore, PEL also offers highly efficient photothermal and electrothermal deicing performance, which can effectively remove the accumulated ice at a light intensity of 0.6 kW/m or an EPD of 0.1 W/cm. Meanwhile, the synergistic deicing mechanism of photothermal and electrothermal was verified at -20 °C. Interestingly, the coating shows heat-assisted healing ability due to the phase change characteristic of paraffin wax, which allows the coating to regain lubricating properties after mechanical abrasion. Therefore, this work provides a reliable way for the design of stable all-weather anti-icing/deicing strategies at low temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!