A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of multistability in chaotic maps. | LitMetric

Mechanism of multistability in chaotic maps.

Chaos

School of Electronic Information, Central South University, Changsha 410083, China.

Published: August 2024

AI Article Synopsis

  • The research explores how multistability works in chaotic maps, starting with a simple one-dimensional chain-climbing map to understand basic principles.
  • Findings indicate that the phase space can be divided into uniform sections, with consistent particle movement until certain parameters create channels leading to chaotic diffusion.
  • The study further examines how adding diverse factors affects multistability, highlighting the relationship between phase transitions and channel formation, and reviews complex chaotic maps to provide insights into these phenomena.

Article Abstract

This research aims to investigate the mechanisms of multistability in chaotic maps. The study commences by examining the fundamental principles governing the development of homogeneous multistability using a basic one-dimensional chain-climbing map. Findings suggest that the phase space can be segmented into distinct uniform mediums where particles exhibit consistent movement. As critical parameter values are reached, channels emerge between these mediums, resulting in deterministic chaotic diffusion. Additionally, the study delves into the topic of introducing heterogeneous factors on the formation of heterogeneous multistability in the one-dimensional map. A thorough examination of phenomena such as multistate intermittency highlights the intimate connection between specific phase transition occurrences and channel formation. Finally, by analyzing two instances-a memristive chaotic map and a hyperchaotic map-the underlying factors contributing to the emergence of multistability are scrutinized. This study offers an alternative perspective for verifying the fundamental principles of homogenous and heterogeneous multistability in complex high-dimensional chaotic maps.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0219361DOI Listing

Publication Analysis

Top Keywords

chaotic maps
12
multistability chaotic
8
fundamental principles
8
heterogeneous multistability
8
chaotic
5
multistability
5
mechanism multistability
4
maps aims
4
aims investigate
4
investigate mechanisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!