High-Order Harmonic Generation in Photoexcited Three-Dimensional Dirac Semimetals.

J Phys Chem Lett

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

Published: August 2024

High-order harmonic generation (HHG) in condensed matter is highly important for potential applications in various fields, such as materials characterization, all-optical switches, and coherent light source generation. Linking HHG to the properties or dynamic processes of materials is essential for realizing these applications. Here, a bridge has been built between HHG and the transient properties of materials through the engineering of interband polarization in a photoexcited three-dimensional Dirac semimetal (3D-DSM). It has been found that HHG can be efficiently manipulated by the electronic relaxation dynamics of 3D-DSM on an ultrafast time scale of several hundred femtoseconds. Furthermore, time-resolved HHG (tr-HHG) has been demonstrated to be a powerful spectroscopy method for tracking electron relaxation dynamics, enabling the identification of electron thermalization and electron-phonon coupling processes and the quantitative extraction of electron-phonon coupling strength. This demonstration provides insights into the active control of HHG and measurements of the electron dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01522DOI Listing

Publication Analysis

Top Keywords

high-order harmonic
8
harmonic generation
8
photoexcited three-dimensional
8
three-dimensional dirac
8
relaxation dynamics
8
electron-phonon coupling
8
hhg
6
generation photoexcited
4
dirac semimetals
4
semimetals high-order
4

Similar Publications

Distinguishing local isomorphism classes in quasicrystals by high-order harmonic spectroscopy.

Nat Commun

December 2024

Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Electron diffraction spectroscopy is a fundamental tool for investigating quasicrystal structures, which unveils the quasiperiodic long-range order. Nevertheless, it falls short in effectively distinguishing separate local isomorphism classes. This is a long outstanding problem.

View Article and Find Full Text PDF

Vocal learners, including humans and songbirds, acquire their complex vocalizations by accurately memorizing and imitating the vocal patterns of other individuals. In songbirds, the caudomedial nidopallium (NCM), considered the secondary auditory region, has been suggested to play a critical role in memorizing and recognizing the songs of tutors. However, the mechanisms by which NCM neurons encode the acoustic information of tutor song are not yet fully understood.

View Article and Find Full Text PDF

High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Phase-matched five-wave mixing in zinc oxide microwire.

Nanophotonics

August 2024

School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

High-order wave mixing in solid-state platforms gather increasing importance due to the development of advanced lasers and integrated photonic circuit for both classical and quantum information. However, the high-order wave mixing is generally inefficient in solids under weak pump. Here, we observed the presence of phase matching of five-wave mixing (5WM) propagating in a zinc oxide (ZnO) microwire.

View Article and Find Full Text PDF

A large number of fully normalized associated Legendre function (fnALF) calculations are required to compute Earth's gravity field elements using ultra high-order gravity field coefficient models. In the surveying and mapping industry, researchers typically rely on CPU-based systems for these calculations, which leads to limitations in execution speed and power efficiency. Although modern CPUs improve instruction execution efficiency through instruction-level parallelism, the constraints of a shared memory architecture impose further limitations on the execution speed and power efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!