Genomic prediction is a modern approach that uses genome-wide markers to predict the genetic merit of unphenotyped individuals. With the potential to reduce the breeding cycles and increase the selection accuracy, this tool has been designed to rank genotypes and maximize genetic gains. Despite this importance, its practical implementation in breeding programs requires critical allocation of resources for its application in a predictive framework. In this study, we integrated genetic and data-driven methods to allocate resources for phenotyping and genotyping tailored to genomic prediction. To this end, we used a historical blueberry (Vaccinium corymbosun L.) breeding dataset containing more than 3000 individuals, genotyped using probe-based target sequencing and phenotyped for three fruit quality traits over several years. Our contribution in this study is threefold: (i) for the genotyping resource allocation, the use of genetic data-driven methods to select an optimal set of markers slightly improved prediction results for all the traits; (ii) for the long-term implication, we carried out a simulation study and emphasized that data-driven method results in a slight improvement in genetic gain over 30 cycles than random marker sampling; and (iii) for the phenotyping resource allocation, we compared different optimization algorithms to select training population, showing that it can be leveraged to increase predictive performances. Altogether, we provided a data-oriented decision-making approach for breeders by demonstrating that critical breeding decisions associated with resource allocation for genomic prediction can be tackled through a combination of statistics and genetic methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tpg2.20488 | DOI Listing |
Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism.
View Article and Find Full Text PDFISA Trans
January 2025
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China. Electronic address:
Hysteresis characteristics widely affects the performance and reliability of pneumatic systems across various industrial applications. Addressing this challenge can significantly enhance system efficiency and precision. This paper aims to develop a rapid and accurate method for controlling the actuating force of a Single-Acting Pneumatic Cylinder (SAPC), considering hysteresis characteristic.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Computational Biomedicine Unit, Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Torino, Italy.
Background And Objectives: Several computational pipelines for biomedical data have been proposed to stratify patients and to predict their prognosis through survival analysis. However, these analyses are usually performed independently, without integrating the information derived from each of them. Clustering of survival data is an underexplored problem, and current approaches are limited for biomedical applications, whose data are usually heterogeneous and multimodal, with poor scalability for high-dimensionality.
View Article and Find Full Text PDFJ Surg Res
January 2025
Center for Injury Science, University of Alabama at Birmingham, Administration Bldg, Birmingham, Alabama. Electronic address:
Introduction: The management of adhesive small-bowel obstruction (aSBO) continues to have wide variation, with no one management strategy accepted as the optimal. The first objective was to evaluate the methods of management and the variations in the management of aSBO at our institution and evaluate the outcomes of those management strategies. The second objective was to compare our outcomes to those of a published study by which patients were managed using an institutional protocol for aSBO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!