The emerging field of optical magnetometry utilizing negative-charged nitrogen vacancy (NV-) centers provides a highly sensitive lab bench technique for spatially resolved physical property measurements. Their implementation in high pressure diamond anvil cell (DAC) environments will become common as other techniques are often limited due to the spatial constraints of the sample chamber. Apparatus and techniques are described here permitting for more general use of magnetic field measurements inside a DAC using continuous wave optical detected magnetic resonance in NV- centers in a layer of nanodiamonds. A microstrip antenna delivers a uniform microwave field to the DAC and is compatible with simple metal gaskets, and the sensor layer of deposited nanodiamonds allows for simple determination of the magnetic field magnitude for B in the 1-100 G range. The ferromagnetic transition in iron at 18 GPa is measured with the apparatus, along with its hysteretic response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0216877 | DOI Listing |
Phys Rev Lett
December 2024
Departments of Physics, Chemistry, and Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois 60607, USA.
We study ferroelectricity in the classic perovskite ferroelectric PbTiO_{3} to high pressures with density functional theory (DFT) and experimental diamond-anvil techniques. We use second harmonic generation spectroscopy to detect lack of inversion symmetry. Consistent with early understanding and experiments, we find that ferroelectricity disappears at moderate pressures.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
The phase changes and reactivity of 1-pentadecene (CH) were investigated using Raman spectroscopy under high-pressure and high-temperature conditions using diamond anvil cells. At room temperature, the phase changes from liquid phase to solid phase I, and solid phase I to solid phase II were observed at 0.3 GPa and 4.
View Article and Find Full Text PDFNano Lett
December 2024
Graduate School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
In colloidal quantum dots (QDs), excitons are confined within nanoscale dimensions, and the relaxation of hot electrons occurs through Auger cooling. The behavior of hot electrons is evident under ambient pressure. Nanocrystal characteristics, including their size, are key to determining hot electron behavior because they serve as the stage.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Goethe University Frankfurt, Institute of Geosciences, Altenhöferallee 1, 60438 Frankfurt, Germany.
We have synthesized the first hydrous sp-carbonate by laser-heating Ba[CO], CO and HO in a diamond anvil cell at 40(3) GPa. The crystal structure of Ba[HCO][HCO][HCO][HCO] was determined by synchrotron single crystal X-ray diffraction. The experiments were complemented by DFT-based calculations.
View Article and Find Full Text PDFIUCrJ
January 2025
Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089, Poland.
High-resolution single-crystal X-ray diffraction experiments on ZnSiO(OH)·HO hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported phase transition and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D space group Pnn2(0, β, 0)000.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!