Synergic Surface Modifications of PbS Quantum Dots by Sodium Acetate in Solid-State Ligand Exchange toward Short-Wave Infrared Photodetectors.

ACS Appl Mater Interfaces

Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China.

Published: August 2024

PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05201DOI Listing

Publication Analysis

Top Keywords

ligand exchange
12
pbs quantum
8
quantum dots
8
solid-state ligand
8
short-wave infrared
8
film morphology
8
synergic surface
4
surface modifications
4
modifications pbs
4
dots sodium
4

Similar Publications

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

We introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.

View Article and Find Full Text PDF

Unlabelled: As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers.

View Article and Find Full Text PDF

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!