DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381348PMC
http://dx.doi.org/10.1093/nar/gkae654DOI Listing

Publication Analysis

Top Keywords

t1ifn response
20
response
9
dna repair
8
repair protein
8
protein polynucleotide
8
polynucleotide kinase/phosphatase
8
type interferon
8
ionizing radiation
8
cell lines
8
cytosolic dna
8

Similar Publications

PARP inhibitors sensitize pancreatic ductal adenocarcinoma (PDAC) to radiation by inducing DNA damage and replication stress. These mechanisms also have the potential to enhance radiation-induced type I interferon (T1IFN)-mediated antitumoral immune responses. We hypothesized that the PARP inhibitor olaparib would also potentiate radiation-induced T1IFN to promote antitumor immune responses and sensitization of otherwise resistant PDAC to immunotherapy.

View Article and Find Full Text PDF

DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation.

View Article and Find Full Text PDF

The balance between the tumor-necrosis factor α (TNFα) and type-I interferon (T1IFN) pathways is crucial for proper immune function. Dysregulation of either pathway can contribute to autoimmune diseases development. Even though TNFα blockade has shown promising results in various autoimmune diseases, the effect on the balance between TNFα and T1IFN is elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Radiotherapy can trigger a type I interferon-mediated immune response, which may be strengthened by a new ATM inhibitor, enhancing the body's antitumoral efforts against pancreatic cancer.
  • Experiments with the ATM inhibitors AZD1390 and AZD0156 revealed that they boost radiation-induced type I interferon expression through specific immune signaling pathways.
  • In mouse models, the combination of ATM inhibitors and radiotherapy improved immune responses, leading to better tumor control, increased CD8+ T cell activity, and the potential for effective systemic treatments against other tumors outside the radiation zone.
View Article and Find Full Text PDF

The cyclic cyclic gaunosine monophosphate adenosine monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic dsDNA and initiates immune responses against pathogens. It is also implicated in several auto-inflammatory diseases known as monogenic interferonopathies, specifically Three prime repair exonuclease 1 (Trex1) loss-of-function (LOF), Dnase2 LOF, and stimulator of interferon genes-associated-vasculopathy-with-onset-in-infancy (SAVI). Although monogenic interferonopathies have diverse clinical presentations, they are distinguished by the elevation of type-1 interferons (T1IFNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!