We aimed to find a gene for coronary artery disease (CAD) early diagnosis by detecting co-pathogenic target gene involved in CAD and pulmonary arterial hypertension (PAH). Methods: Datasets were obtained from the Gene Expression Omnibus (GEO) database, including GSE113079, GSE113439, and GSE12288, to investigate gene expression patterns in cardiovascular diseases. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify gene modules associated with clinical traits. Differential gene expression analysis and functional enrichment analysis were carried out. Protein-protein interaction (PPI) networks were constructed. JASPAR database and FIMO tool were utilized to predict transcription factor (TF) binding sites. Results: Fifteen key genes were identified in CAD and PAH, with CNTN1 being prioritized for further investigation due to its high connectivity degree. Upstream regulation analysis identified potential TFs (DRGX, HOXD3, and RAX) and 7 miRNAs targeting CNTN1. The expression profile of CNTN1 was significantly upregulated in CAD samples, and ROC analysis indicated potential diagnostic value for CAD. CMap database analysis predicted potential targeted drugs for CAD. Conclusion: CNTN1 was detected as a co-pathogenetic gene for CAD and PAH. It is highly expressed in CAD patients and has potential value for CAD diagnosis. CNTN1 is potentially regulated by 3 TFs and 7 miRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317787 | PMC |
http://dx.doi.org/10.14744/AnatolJCardiol.2024.4331 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!