Detailed state-of-the-art and density functional theory (DFT) calculations have been undertaken to understand both Single-Molecule Magnetic (SMM) and Single-Molecule Toroic (SMT) behaviors of fascinating 3d-4f {MLn} triangular complexes having the molecular formula [MII3LnIII3(O)L(PyCO)](OH)(ClO)·8HO (with M = Zn; Ln = Dy (1), Tb (2) & Gd (3) and M = Cu; Ln = Dy (4), Tb (5) & Gd (6)) and [NiLn(HO)(mpko)(O)(NO)](ClO)3CHOH3CHCN (Ln = Dy (7), Tb (8), and Gd (9)) [mpkoH = 1-(pyrazin-2-yl)ethanone oxime]. All these complexes possess a peroxide ligand that bridges the {LnIII3} triangle in a μ-η:η fashion and the oxygen atoms/oxime of co-ligands that connect each M ion to the {LnIII3} triangle. Through our computational studies, we tried to find the key role of the peroxide bridge and how it affects the SMM and SMT behavior of these complexes. Primarily, Complete Active Space Self-Consistent Field (CASSCF) SINGLE_ANISO + RASSI-SO + POLY_ANISO calculations were performed on 1, 2, 4, 5, 7, and 8 to study the anisotropic behavior of each Ln(III) ion, to derive the magnetic relaxation mechanism and to calculate the Ln-Ln and Cu/Ni-Ln magnetic coupling constants. DFT calculations were also performed to validate these exchange interactions () by computing the Gd-Gd and Cu/Ni-Gd interactions in 3, 6, and 9. Our calculations explained the experimental magnetic relaxation processes and the magnetic exchange interactions for all the complexes, which also strongly imply that the peroxide bridge plays a role in the SMM behavior observed in these systems. On the other hand, this peroxide bridge does not support the SMT behavior. To investigate the effect of bridging ions in {MLn} systems, we modeled a {ZnII3DyIII3} complex (1a) with a hydroxide ion replacing the bridged peroxide ion in complex 1 and considered a hydroxide-bridged {CoIII3DyIII3} complex (10) having the formula [CoDy(OH)(OOCCMe)(teaH)(HO)](NO)·HO. We discovered that as compared to the LoProp charges of the peroxide ion, the greater negative charges on the bridging hydroxide ion reduce quantum tunneling of magnetization (QTM) effects, enabling more desirable SMM characteristics and also leading to good SMT behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt01800a | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!