Osmoprotectant osmolyte and nonsteroidal anti-inflammatory drug (NSAID) coadministration can work synergistically in cancer chemotherapy since most tumors are inflammatory and cancer cells experience osmotic stress. NSAIDs have been shown to inhibit cyclooxygenase (COX) enzymes, which in turn reduces prostaglandin synthesis and prevents inflammation. They also encourage cell death to prevent tumor growth and its spread to other tissues and prevent the construction of new blood vessels, which contributes to the growth of cancer. Taurine belongs to the class of osmolytes since it has been shown to stabilize macromolecular structures and maintain cellular osmotic balance when combined with betaine and glycine. When these drugs are taken together, as opposed to separately, the effectiveness of cancer treatment is increased by increasing cancer cell death and suppressing tumor growth. Notable therapeutic benefits include the reduction of local inflammatory milieu by NSAIDs, which promotes tumor development, and the protection of surviving, normal cells and tissues from treatment-induced damage caused by cancer. By enhancing this synergy, side-effect risk can be decreased and treatment outcomes improved in terms of quality. Put another way, peptides can increase the therapeutic index of NSAIDs in cancer patients by preventing cell damage, which may lessen the gastrointestinal (GI), cardiovascular (CV), and renal side effects of the drug. However, there are drawbacks because using NSAIDs for an extended period of time is linked to serious side effects that call for strict supervision. More research is required because the usefulness and significance of osmolytes in cancer therapy are still very unclear, if not fragmented. In addition, people who live in places with limited resources may find it difficult to afford the possible expenditures associated with osmolytes and selective cyclooxygenase-2 (COX-2) inhibitors. Only the molecular mechanisms of the two drugs' interactions, the appropriate dosages for combination therapy, and clinical trials to validate the efficacy and safety of this dosage should be the focus of future research. The request is inviting because it presents hope for an extremely successful antiviral strategy; nevertheless, in order to implement this approach successfully, it is likely to be necessary to create affordable formulations and scalable solutions that do not necessitate excessive treatment regimen individualization. Due to their complementary capacities to demonstrate anti-inflammatory and cytoprotective effects, Akta and 5-aminosalicylic acid (5-ASA) administration may thus represent a significant advancement in the treatment of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290388 | PMC |
http://dx.doi.org/10.7759/cureus.63529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!