The preventative effects of metabolites against LPS-induced sepsis.

Front Microbiol

State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.

Published: July 2024

Introduction: Sepsis is a syndrome of organ dysfunction caused by a dysregulated host response to infection and septic shock. Currently, antibiotic therapy is the standard treatment for sepsis, but it can lead to drug resistance. The disturbance of the gut microbiota which is affected by sepsis could lead to the development of organ failure. It is reported that probiotics could shape the gut microbiota, potentially controlling a variety of intestinal diseases and promoting whole-body health.

Methods: In this study, we evaluated the preventive effects of intra- and extracellular products of probiotics on sepsis. The extracellular products of () were identified through the cell experiments. The preventive effect and mechanism of extracellular products on mouse sepsis were further explored through HE staining, mouse survival rate measurement, chip analysis, etc.

Results: extracellular products increase cell survival and significantly reduce inflammatory factors secreted in a cellular sepsis model. In experiments in mice, our samples attenuated sepsis-induced pulmonary edema and inflammatory infiltrates in the lungs of mice, and reduced mortality and inflammatory factor levels within the serum of mice. Finally, the mechanism of sepsis prevention by lactic acid bacteria is suggested. Extracellular products of could effectively prevent sepsis episodes.

Discussion: In animal experiments, we reported that extracellular products of can effectively prevent sepsis, and preliminarily discussed the pathological mechanism, which provides more ideas for the prevention of sepsis. In the future, probiotics may be considered a new way to prevent sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288810PMC
http://dx.doi.org/10.3389/fmicb.2024.1404652DOI Listing

Publication Analysis

Top Keywords

extracellular products
24
sepsis
12
prevent sepsis
12
sepsis lead
8
gut microbiota
8
products effectively
8
effectively prevent
8
extracellular
6
products
6
preventative effects
4

Similar Publications

Extracellular vesicles of PCM 2675 and PCM 489: an introductory characteristic.

Extracell Vesicles Circ Nucl Acids

November 2024

Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland.

Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry.

View Article and Find Full Text PDF

Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.

Environ Sci Ecotechnol

January 2025

Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.

Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.

View Article and Find Full Text PDF

Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.

Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.

View Article and Find Full Text PDF

A responsive cocktail nano-strategy breaking the immune excluded state enhances immunotherapy for triple negative breast cancer.

Nanoscale

January 2025

Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

The exclusion of immune cells from the tumor can limit the effectiveness of immunotherapy in triple negative breast cancer (TNBC). The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway plays a crucial role in priming adaptive anti-tumor immunity through the production of type I interferons (IFNs), facilitating the maturation of dendritic cells (DCs) and the function of T cells. Although the increased expression of programmed death-ligand 1 (PD-L1) upon STING activation is favorable for amplifying the efficacy of immune checkpoint inhibitors (ICIs) and realizing combination therapy, the penetration barrier remains a major obstacle.

View Article and Find Full Text PDF

Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!