Recently, aluminum ion batteries (AIBs) have attracted more attention due to the reliable, cost-effective, and air-stable Al metal anode. Among various cathode materials of AIBs, graphite was paid more attention owing to its high-voltage plateau and stable properties in storing chloroaluminate anions (AlCl ). However, its low capacity limits the real application and can not satisfy the requirements of modern society. To solve the above issue, herein, boron (B)-doping expanded graphite (B-EG) was prepared by thermal treatment of expanded graphite and boric acid together in a reduction atmosphere. Based on the structural and electrochemical characterization, the results show that B-doping amplifies the interlayer space of expanded graphite (EG), introduces more mesoporous structures, and induces electron deficiency, which is beneficial to accelerating the transfer and adsorption of active ions. The results indicate that the B-EG electrode exhibits excellent rate capability and a high specific capacity of 84.9 mA h g at 500 mA g. Compared with the EG electrode, B-EG shows better cycle stability with the specific capacity of 87.7 mA h g after 300 cycles, which could be attributed to lower pulverization and higher pseudo-capacitance contribution of B-EG after the introduction of B species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289664PMC
http://dx.doi.org/10.1039/d4ra03161jDOI Listing

Publication Analysis

Top Keywords

expanded graphite
16
cathode materials
8
aluminum ion
8
ion batteries
8
specific capacity
8
expanded
4
graphite boron-doping
4
boron-doping cathode
4
materials high-capacity
4
high-capacity stable
4

Similar Publications

Graphdiyne (GDY), which is composed of benzene rings and acetylene linkage units, is a new allotrope of carbon material. In particular, the large triangular pores of GDY, with a diameter of 5.4 Å, theoretically predict a higher lithium embedding density than traditional graphite anodes, making it a promising candidate for energy storage materials in lithium-ion (Li-ion) batteries.

View Article and Find Full Text PDF

This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.

View Article and Find Full Text PDF

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Observation of morphological changes in silicon-based negative-electrode active materials during charging/discharging using operando scanning electron microscopy.

Microscopy (Oxf)

December 2024

Green Innovation Center, Green Transformation Division, Panasonic Holdings Corporation, 3-1-1 Yagumo-Nakamachi, Moriguchi City, Osaka 570-8501, Japan.

The direct observation of the morphological changes in silicon-based negative electrode (Si-based negative electrode) materials during battery charging and discharging is useful for handling such materials and in electrode plate design. We developed an operando scanning electron microscopy (operando SEM) technique to quantitatively evaluate the expansion and contraction of Si-based negative electrode materials. A small all-solid-state lithium-ion battery was charged and discharged, and the expansion/contraction of particles while harnessing capacity was observed using SEM.

View Article and Find Full Text PDF

Oil recovery and heat transfer performance of polyurethane sponges coated with 3D carbon nano networks.

J Hazard Mater

December 2024

Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Heatable super hydrophobic polyurethane (PU) sponges (S-GNS/CNT/PVA@PU) containing three-dimensional (3D) carbon nano-networks (CNNs) coatings made from two-dimensional (2D) expanded graphite nano-sheets (GNS) bridged by one-dimensional (1D) carbon nano-tubes (CNT) were constructed using polyvinyl alcohol (PVA) as binder, in which light and/or electric energy could be rapidly converted into heat to reduce the viscosity of spilled heavy oils, resulting in greatly increased oil. Their heavy oil recovery rate could reach 792 kg/(m·h) under combined light and Joule heating of 1 sun and 5 V. Surface heat dissipating coefficient Ks, heat dissipating index n, and surface heat absorption capacity Cs were studied relating to sizes and shapes of surface heating fields under varied heating modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!